首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
admin
2016-10-26
52
问题
已知y
1
*
=xe
x
+e
2x
,y
2
*
=xe
x
+e
-x
,y
3
*
=xe
x
+e
2x
-e
-x
是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
选项
答案
易求得该微分方程相应的齐次方程的两个特解 y
1
*
—y
3
*
=e
-x
, y
2
*
—y
3
*
=2e
-x
一e
2x
. 进一步又可得该齐次方程的两个特解是 y
1
=e
-x
,y
2
=2(y
1
*
—y
3
*
)一(y
2
*
—y
3
*
)=e
2x
, 它们是线性无关的.为简单起见,我们又可得该非齐次方程的另一个特解 y
4
*
=y
1
*
一y
2
=xe
x
. 因此该非齐次方程的通解是 y=C
1
e
-x
+C
2
e
2x
+xe
x
,其中C
1
,C
2
为任意常数. 由通解结构易知,该非齐次方程是:二阶线性常系数方程 y″+py′+qy=f(x). 它的相应特征根是λ
1
=-1,λ
2
=2,于是特征方程是 (λ+1)(λ一2)=0,即 λ
2
一λ一2=0. 因此方程为 y″一y′一2y=f(x). 再将特解y
4
*
=xe
x
代入得 (x+2)e
x
一(x+1)e
x
一2xe
x
=f(x),即 f(x)=(1—2x)e
x
因此方程为 y″一y′一2y=(1—2x)e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/e2u4777K
0
考研数学一
相关试题推荐
[*]
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
当x→0+时,求等价的无穷小量.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.当a为何值时,向量组(I)与(Ⅱ)等价?
(2005年试题,17)如图1—3—2所示,曲线c的方程为y=f(x),A(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
随机试题
经典的肾上腺素传递方式属于
下列哪项不属于中焦病证的临床表现()(2001年第27题)
能与GDP/GTP结合的蛋白质是
正常人体温高热
简述债权人撤销权的成立要件。[简答题,中南大学2019年研;首师大2010年研]
()可以引用和编辑文本、图像、声音、动画和视频等多种媒体素材。‘
微分方程y"一2y’=x2+e2x+1的待定系数法确定的特解形式(不必求出系数)是__________.
Ifyou’vegotanearforlanguages,askillofcodingorasteadyhandanddon’tfaintatthesightofbloodthenyourcareerlo
设待排序的记录为(28,19,11,17,22),经过下列过程将这些记录排序:28,19,11,17,2219,11,17,22,2811,17,19,22,28所用的排序方法是(61)。
Usingtheinformationinthepassage,completethetablebelow.Writeyouranswersinboxes8-10onyouranswersheet.
最新回复
(
0
)