首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
admin
2016-10-26
32
问题
已知y
1
*
=xe
x
+e
2x
,y
2
*
=xe
x
+e
-x
,y
3
*
=xe
x
+e
2x
-e
-x
是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
选项
答案
易求得该微分方程相应的齐次方程的两个特解 y
1
*
—y
3
*
=e
-x
, y
2
*
—y
3
*
=2e
-x
一e
2x
. 进一步又可得该齐次方程的两个特解是 y
1
=e
-x
,y
2
=2(y
1
*
—y
3
*
)一(y
2
*
—y
3
*
)=e
2x
, 它们是线性无关的.为简单起见,我们又可得该非齐次方程的另一个特解 y
4
*
=y
1
*
一y
2
=xe
x
. 因此该非齐次方程的通解是 y=C
1
e
-x
+C
2
e
2x
+xe
x
,其中C
1
,C
2
为任意常数. 由通解结构易知,该非齐次方程是:二阶线性常系数方程 y″+py′+qy=f(x). 它的相应特征根是λ
1
=-1,λ
2
=2,于是特征方程是 (λ+1)(λ一2)=0,即 λ
2
一λ一2=0. 因此方程为 y″一y′一2y=f(x). 再将特解y
4
*
=xe
x
代入得 (x+2)e
x
一(x+1)e
x
一2xe
x
=f(x),即 f(x)=(1—2x)e
x
因此方程为 y″一y′一2y=(1—2x)e
x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/e2u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
(1)设f(x)在R上有定义,证明:y=f(x)的图形关于直线x=1对称的充要条件是f(x)满足f(x+1)=f(1-x),x∈R(2)设f(x)在R上有定义,且y=f(x)的图形关于直线x=1与直线x=2对称,证明:f(x)是周期函数,并求f(x
设函数f(x)=(x-1)(ex-2)…(enx-n),其中n为正整数,则f’(0)=
差分方程yt+1-yt=t2t的通解为_______.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
已知(1)计算行列式|A|.(2)当实数α为何值时,方程组Ax=β有无穷多解,并求其通解.
设二阶常系数微分方程y〞+αyˊ+βy=ye2x有一个特解为y=e2x+(1+x)ex,试确定α,β,γ和此方程的通解.
设f(x)连续,(A为常数),求φ’(t)并讨论φ’(x)在x=0处的连续性.
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________.
随机试题
什么是JavaScript?JavaScript有哪些基本特点?
男性患者,60岁,肾绞痛,血尿,血钙升高,血磷低,肾功能正常,X线示骨质疏松,可考虑
A.茵陈B.篇蓄C.木通D.慧苡仁E.萆薢
女,56岁,拟行直肠癌根治术,术后人工肛门的位置在
交通、钢铁、机械、石油化工等基础工业都属于()。
有人说语文综合性学习就是以前的语文活动课,你怎么看?
收容教养的对象包括( )。
下面的四句话有一句多一个“只”,请找出这一句()。
A.Doyouknowwhatahandicappedspaceis?B.Thesignsalwaystellyouhowlongyoucanparkthereandonwhatdays.C.Theny
假设有下列声明语句:inti,j;floatx,y;doubleu,v;下面()个赋值是合法的。
最新回复
(
0
)