首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,—2,1)T,α3=(—2,—1,2)T,试求矩阵A。
设三阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,—2,1)T,α3=(—2,—1,2)T,试求矩阵A。
admin
2019-03-23
56
问题
设三阶矩阵A满足Aα
i
=iα
i
(i=1,2,3),其中列向量α
1
=(1,2,2)
T
,α
2
=(2,—2,1)
T
,α
3
=(—2,—1,2)
T
,试求矩阵A。
选项
答案
由题设条件可得,Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=3α
3
,所以α
1
,α
2
,α
3
是矩阵A不同特征值的特征向量,故它们线性无关。利用分块矩阵,则有 A(α
1
,α
2
,α
3
)=(α
1
,2α
2
,3α
3
), 因为矩阵(α
1
,α
2
,α
3
)可逆,故 A=(α
1
,2α
2
,3α
3
)(α
1
,α
2
,α
3
)
—1
=[*]
解析
本题主要考查的是已知矩阵的特征值和特征向量,反求矩阵。可直接利用概念求解。当然本题还可以利用相似对角化求解,解法如下:
因为矩阵A有3个不同的特征值,所以A可相似对角化,即存在一个三阶可逆矩阵P,使得
P
—1
AP=Λ=
,P=(α
1
,α
2
,α
3
),
那么A=PΛP
—1
,进一步求解可得A。
转载请注明原文地址:https://kaotiyun.com/show/eHV4777K
0
考研数学二
相关试题推荐
设C=,其中A,B分别是m,n阶矩阵.证明C正定A,B都正定.
设n阶矩阵A满足A4+2A3-5A2+2A+5E=0.证明A-2E可逆.
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
证明:n>3的非零实方阵A,若它的每个元素等于自己的代数余子式,则A是正交矩阵.
已知某企业的总收益函数为R(Q)=26Q一2Q2一4Q3,总成本函数为C(Q)=8Q+Q2,其中Q表示产品的产量.求边际收益函数、边际成本函数以及利润最大时的产量.
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
随机试题
对买方而言,最好的支付方式是()
此所谓“藉寇兵而赍盗粮”者也。
《郑伯克段于鄢》选自《左传》。()
女,20岁。上前牙松动3年。检查:上切牙松动Ⅱ度扇形移位,口腔卫生较好,初步印象为局限性青少年牙周炎。为确诊还应做的最重要的检查是
泻白散与清骨散的组成中均含有的药物是
按照运输方式,国际货物运输保险包括陆上货物运输保险、航空货物运输保险、邮递货物保险和()。
A公司于2008年1月10日与B公司签订一份标的额为100万元的买卖合同,合同约定采用汇票结算方式。2008年2月1日,A公司按照合同约定发出货物,B公司于2月10日签发一张见票后1个月付款的银行承兑汇票。3月5日A公司向C银行提示承兑并于当日获得承兑。3
网络的配置管理主要目的在于【 】网络和系统的配置信息以及网络内各设备的状态和连接关系。
trade,above,expiration,respond,strike,profitable,seller,how,most,financialIngeneral,anoptiongivestothebuyer
TheoriesonWhyWeLikeOtherPeopleInordertofigureoutthereasonswhywefallinlikeandwhywefallinlovewithpeop
最新回复
(
0
)