首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
admin
2019-07-12
70
问题
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫
-∞
+∞
g(x)dx,b=∫
-∞
+∞
h(y)dy存在且不为零,则X与Y独立,其密度函数f
X
(x),f
Y
(y)分别为
选项
A、f
X
(x)=g(x),f
Y
(y)=h(y).
B、f
X
(x)=ag(x),f
Y
(y)=bh(y).
C、f
X
(x)=bg(x),f
Y
(y)=ah(y).
D、f
X
(x)=g(x),f
Y
(y)=abh(y).
答案
C
解析
显然我们需要通过联合密度函数计算边缘密度函数来确定正确选项,由于
f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
-∞
+∞
g(x)h(y)dy=g(x)∫
-∞
+∞
h(y)dy=bg(x),
f
Y
(y)=∫
-∞
+∞
g(x)h(y)dx=ah(y),
又1=∫
-∞
+∞
∫
-∞
+∞
f(x,y)dxdy=∫
-∞
+∞
g(x)dx∫
-∞
+∞
h(y)dy=ab,
所以f(x,y)=g(x)h(y)=abg(x)h(y)=bg(x)ah(y)=f
X
(x)f
Y
(y),X与Y独立,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/eVJ4777K
0
考研数学三
相关试题推荐
设[∫0uf(u,v)dv]du,其中f(u,v)是连续函数,则dz=_____.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
设图形(a),(b),(c)如下:从定性上看,若函数f(x)在[0,1]内可导,则y=f(x),y=∫0xf(t)dt与y=f’(x)的图形分别是
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设A为n阶矩阵,证明:其中n≥2.
设A是n阶矩阵,下列命题错误的是().
设求a,b的值.
下列说法正确的是().
求极限
随机试题
关于呼吸增快的叙述正确的是
系统管理
患儿,4岁。近3个月来食欲不振,神疲乏力,形体逐渐消瘦,面色苍黄,口唇色淡,大便干稀不调,舌淡苔白,脉细。其治疗应首选的方剂是
根据《建设工程项目管理规范》,项目经理的权限包括()。
企业用现金支付办公用品费780元,会计人员编制的付款凭证为借记“管理费用”科目870元,贷记“库存现金”科目870元,并登记入账。对当年发生的该项记账错误不应采用的更正方法有()。
重新召集的基金份额持有人大会应当由代表()以上的基金份额持有人参加,方可召开。
电子档案具有的特点包括()。
人生就是这样坎坎坷坷,曲曲折折,有直,就会有曲,谁的人生,都不会一帆风顺。痛苦是常有的,遗憾是常见的。有的人,于平凡中含着伤痛;有的人,于痛苦中带着微笑;不同的人,有着不同的情形。生命总是眷恋着坚定,厌倦着沉沦。告诉自己,______。填入画横线部分最恰当
A、 B、 C、 AAboutthreemoremonthsanswershowmuchtimewillittake.Choice(B)answershowhighisthebuild
Oneofthebasiccharacteristicsofcapitalismistheprivateownershipofthemajormeansofproduction—capital.Theownership
最新回复
(
0
)