首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
admin
2019-07-12
54
问题
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫
-∞
+∞
g(x)dx,b=∫
-∞
+∞
h(y)dy存在且不为零,则X与Y独立,其密度函数f
X
(x),f
Y
(y)分别为
选项
A、f
X
(x)=g(x),f
Y
(y)=h(y).
B、f
X
(x)=ag(x),f
Y
(y)=bh(y).
C、f
X
(x)=bg(x),f
Y
(y)=ah(y).
D、f
X
(x)=g(x),f
Y
(y)=abh(y).
答案
C
解析
显然我们需要通过联合密度函数计算边缘密度函数来确定正确选项,由于
f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
-∞
+∞
g(x)h(y)dy=g(x)∫
-∞
+∞
h(y)dy=bg(x),
f
Y
(y)=∫
-∞
+∞
g(x)h(y)dx=ah(y),
又1=∫
-∞
+∞
∫
-∞
+∞
f(x,y)dxdy=∫
-∞
+∞
g(x)dx∫
-∞
+∞
h(y)dy=ab,
所以f(x,y)=g(x)h(y)=abg(x)h(y)=bg(x)ah(y)=f
X
(x)f
Y
(y),X与Y独立,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/eVJ4777K
0
考研数学三
相关试题推荐
设函数f(x,y)=计算二重积分其中D={(x,y)|x2+(y—1)2≤1}.
求幂级数的收敛域D与和函数S(x).
设y(x)是由x2+xy+y=tan(x—y)确定的隐函数,且y(0)=0,则y”(0)=_______.
设随机变量X,Y相互独立,且X~P(1),Y~P(2),求P(max{X,Y}≠0)及P(min{X,Y}≠0).
设随机变量X的概率密度为求Y=eX的概率密度fY(y).
令f(x)=x-[x],求极限
设(n=1,2,…;an>0,bn>0),证明:若级数发散.
二次型f(x1,x2,x3)=5x12+5x22+cx32—2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的变换.
求下列极限:
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式(a>0,b>0,c>0).
随机试题
在课程内容选择上,斯宾塞认为科学知识最有价值,其判断依据是他的()。
建模基准不包括:
一淋巴瘤患者双侧颈部淋巴结肿大,胸、腹部CT检查提示左肺内有一直径3.5cm大小的结节影,无发热、盗汗及体重减轻,临床分期为_________期。
房地产价格评估机构资格等级每2年审验一次,合格的原资格等级可再延期2年。()
场景(三)某市政立交桥工程采用钻孔灌注桩基础,八棱形墩柱,上部结构为跨径25m后张预应力混凝土箱梁。桩基主要穿过砾石土(砾石含量少于20%,粒径大于钻杆内径2/3)。钻孔灌注桩工程分包给专业施工公司。钻孔桩施工过程中发生两起情况:(1)7#桩成孔过程中出
下列有关我国的湖泊的说法,错误的是:
下列关于首要分子的说法正确的是()。
下面属于A类IP地址的是
下列关于类定义的说法中,正确的是()。
Everylivingthinghasaninnerbiologicalclockthatcontrolsbehavior.Theclockworksallthetimeevenwhentherearenoout
最新回复
(
0
)