首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫-∞+∞g(x)dx,b=∫-∞+∞h(y)dy存在且不为零,则X与Y独立,其密度函数fX(x),fY(y)分别为
admin
2019-07-12
48
问题
已知(X,Y)的联合密度函数f(x,y)=g(x)h(y),其中g(x)≥0,h(y)≥0,a=∫
-∞
+∞
g(x)dx,b=∫
-∞
+∞
h(y)dy存在且不为零,则X与Y独立,其密度函数f
X
(x),f
Y
(y)分别为
选项
A、f
X
(x)=g(x),f
Y
(y)=h(y).
B、f
X
(x)=ag(x),f
Y
(y)=bh(y).
C、f
X
(x)=bg(x),f
Y
(y)=ah(y).
D、f
X
(x)=g(x),f
Y
(y)=abh(y).
答案
C
解析
显然我们需要通过联合密度函数计算边缘密度函数来确定正确选项,由于
f
X
(x)=∫
-∞
+∞
f(x,y)dy=∫
-∞
+∞
g(x)h(y)dy=g(x)∫
-∞
+∞
h(y)dy=bg(x),
f
Y
(y)=∫
-∞
+∞
g(x)h(y)dx=ah(y),
又1=∫
-∞
+∞
∫
-∞
+∞
f(x,y)dxdy=∫
-∞
+∞
g(x)dx∫
-∞
+∞
h(y)dy=ab,
所以f(x,y)=g(x)h(y)=abg(x)h(y)=bg(x)ah(y)=f
X
(x)f
Y
(y),X与Y独立,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/eVJ4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,4]上连续,且∫04f(x)dx=0,求证:存在ξ∈(0,4)使得f(ξ)+f(4一ξ)=0.
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是().
设α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中r(B)=2.求方程组(Ⅱ)BX=0的基础解系;
设D={(x,y)|0<x<1,0<y<1),变量(X,Y)在区域D上服从均匀分布,令令U=X+Z,求U的分布函数;
设X,Y为随机变量,且E(X)=1,E(Y)=2,D(X)=4,D(y)=9,用切比雪夫不等式估计P{|X+Y-3|≥10}.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:In∫01f(x)dx≥∫01lnf(x)dx.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
设随机变量X的数学期望EX=75,方差DX=5,由切比雪夫不等式估计得P{|X一75|≥k}≤0.05,则k=_____.
对于随机变量X1,X2,…,X3,下列说法不正确的是().
随机试题
以下属于穆旦的作品的是()
患者,先见全身战栗,继而汗出,其诊断是
A.隆起型和表浅型B.凹陷癌和弥漫型癌C.高分化癌和低分化癌D.膨胀型和浸润型E.息肉性型和溃疡型根据生长方式胃癌可分为
行政处罚由具有处罚权的行政机关()实施。
中标人拒绝提交履约保证金的,应( )。
通常把产生能量的能量源或拥有能量的能量载体作为( )。
材料一:从2007年11月9日到15日,国家法定节假日调整方案在新华网、人民网等网站上公布,引起强烈反响。据初步统计,大约155万网民参加了此项调查。国家法定节假日调整方案在网上开展民意调查的同时。也印发给中央和国家机关、各地党委和政府、军队系统、各民主党
任何话语交际都是由三个关键部分构成的:信息发送者、信息、信息接受者。其中发送者与接受者的关系在很大程度上决定了交际过程中传送的是什么性质的信息。在自由、平等、相互尊重的发送者与接受者关系中,传送的信息是说理。反过来说也是一样,为了传送说理这种信息,交际双方
甲、乙两人在一条长100米的直路上来回跑步,甲的速度3米/秒,乙的速度2米/秒。如果他们同时分别从直路的两端出发,当他们跑了10分钟后,共相遇多少次?
根据所给资料,回答下列问题。2011年上交所成交金额最高的月份,深交所上市公司的市价总值比上月()。
最新回复
(
0
)