首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为 (1,2,2,1)T+c(1,一2,4,0)T,c任意. 记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为 (1,2,2,1)T+c(1,一2,4,0)T,c任意. 记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解.
admin
2018-05-23
130
问题
设4阶矩阵A=(α
1
,α
2
,α
3
,α
4
),方程组Ax=β的通解为
(1,2,2,1)
T
+c(1,一2,4,0)
T
,c任意.
记B=(α
3
,α
2
,α
1
,β一α
4
).求方程组Bx=α
1
一α
2
的通解.
选项
答案
首先从AX=β的通解为(1,2,2,1)
T
+c(1,一2,4,0)
T
可得到下列讯息: ①Ax=0的基础解系包含1个解,即4一r(A)=1,得r(A)=3.即r(α
1
,α
2
,α
3
,α
4
)=3. ②(1,2,2,1)
T
是Ax=β解,即α
1
+2α
2
+2α
3
+α
4
=β. ③(1,一2,4,0)
T
是Ax=0解,即α
1
一2α
2
+4α
3
=0.α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)=2. 显然B(0,一1,1,0)
T
=α
1
一α
2
,即(0,一1,1,0)
T
是Bx=α
1
一α
2
的一个解. 由②,B=(α
3
,α
2
,α
1
,β一α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),于是 r(B)=r(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)=r(α
1
,α
2
,α
3
)=2. 则Bx=0的基础解系包含解的个数为4一r(B)=2个.α
1
一2α
2
+4α
3
=0说明(4,一2,1,0)
T
是Bx=0的解;又从B=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)容易得到B(一2,一2,一1,1)
T
=0,说明(一2,一2,一1,1)
T
也是Bx=0的解.于是(4,一2,1,0)
T
和(一2,一2,一1,1)
T
构成Bx=0的基础解系. Bx=α
1
—α
2
的通解为: (0,一1,1,0)
T
+cα
1
(4,一2,1,0)
T
+c
2
(一2,一2,一1,1)
T
,c
1
,c
2
任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/QOX4777K
0
考研数学三
相关试题推荐
n维向量组(Ⅰ)α1,α2,…,αs和(Ⅱ)β1,β2,…,βt等价的充分必要条件是
设z=z(u,v)具有二阶连续偏导数,且z=z(x-2y,z+3y)满足求z=z(u,v)的一般表达式.
方程y(4)-2ˊˊˊ-3yˊˊ=e-3x-2e-x+x的特解形式(其中a,b,c,d为常数)是()
证明:不等式1+xln(x+),-∞<x<+∞.
求yˊˊ-y=e|x|的通解.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)-3f(1-sinx)=8x+α(z),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,fˊ(0)=0.证明:在[-1,1]内存在ξ,使得fˊˊˊ(ξ)=3.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设矩阵A=,且|A|=-1,A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=[1,-1,1]T,求a,b,c及λ0的值.
设则B等于().
随机试题
胎头吸引术牵引时间最长不超过( )。
银汞合金中引起延缓性膨胀的元素是
神经细胞动作电位的幅度接近于()
患儿,女,4岁。发热3天后于头颈部出现淡红色充血性斑丘疹,体温上升至38.8℃,护士可采用哪项护理措施
佟冬17周岁,高中毕业后没有考上大学,待业在家,有心出去闯荡,苦于缺乏资金无法成行。佟冬生母因难产而死,他一直随生父和继母张敏生活,直到去年生父遭车祸去世。目前佟冬和张敏同住。某日,佟冬在张敏的抽屉里发现生父的遗嘱,内容为:生前的所有积蓄留给张敏供日常生活
从某种角度看,佛祖本质上就是一个具备现代意识的知识分子。他开创的佛教完全不像宗教,不仅没有一个全知全能的上帝,也不提倡个人崇拜,不搞繁琐的祭祀仪式。他倡导的轮回说可以理解为世间万物都有联系,互为因果,这在某种程度上是非常正确的。他相信人人平等,反对种族歧视
减刑的对象包括()。
简述法律推理的特征。
给定一个关键字序列(24,19,32,43,38,6,13,22),进行快速排序,扫描一趟后的结果是_____________。
AstheworldexcitedlygreetedSnuppy,thefirstcloned(克隆)dog,commentatorscelebratedourcleverness.Manyfeelproudthatour
最新回复
(
0
)