首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明: 存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2018-05-25
64
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:
存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
因为A有三个不同的特征值λ
1
,λ
2
,λ
3
所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3. 若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
;若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况.B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/dOX4777K
0
考研数学三
相关试题推荐
设当x→0时,f(x)=ax3+bx与g(x)=等价,则()
已知y1=xex+e2x和y2=xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设函数f(x)在x=2的某邻域内可导,且fˊ(x)=ef(x),f(2)=1,计算f(n)(2).
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.证明:
设u=f(r),而r=,f(r)具有二阶连续导数,则=()
级数,当________时绝对收敛;当_________时条件收敛;当_________时发散.
下列结论正确的是()
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4线性相关;(2)a为何值时,向量组α1,α2,α3,α4线性无关;(3)a
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0,则
求出一个齐次线性方程组,使它的基础解系是η1=(2,-1,1,1)T,η2=(-1,2,4,7)T.
随机试题
关于仲裁庭组成的说法,正确的有()。
切线类技术分析方法中,常见的切线有()。
下列选项中,不属于房地产开发层面质量控制的特点的是()。
根据合伙企业法律制度的规定,下列关于有限合伙企业解散和清算的表述中,不正确的是()。
“大明孝陵神功圣德碑”是()建立的。
古希腊荷马时期最早的造型艺术作品是几何纹风格的陶瓶,造型简朴,大小不一,用于敬神和陪葬,所以这一时期又被称为“几何纹样时期”。()
认定公民的出生时间,其证明依据的效力从高到低的顺序是医院证明、其他相关证明、户籍证明。()
做笔记时用红线标出是运用了知觉的()。
传统意义上的计算机病毒具有哪些特征?计算机病毒可以分为哪几类?
Thevideogameposesaworld—amuchsimplerworldthanourown,wheresuccessisveryclearlydefinedand,foratime,clearlya
最新回复
(
0
)