首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶矩阵A的特征值为λ1==-1,λ2=0,λ3=1,则下列结论不正确的是( ).
设三阶矩阵A的特征值为λ1==-1,λ2=0,λ3=1,则下列结论不正确的是( ).
admin
2019-08-12
36
问题
设三阶矩阵A的特征值为λ
1
==-1,λ
2
=0,λ
3
=1,则下列结论不正确的是( ).
选项
A、矩阵A不可逆
B、矩阵A的迹为零
C、特征值-1,1对应的特征向量正交
D、方程组AX=0的基础解系含有一个线性无关的解向量
答案
C
解析
由λ
1
=-1,λ
2
=0,λ
3
=1得|A|=0,则r(A)<3,即A不可逆,A正确;又λ
1
+λ
2
+λ
3
=tr(A)=0,所以B正确;因为A的三个特征值都为单值,所以A的非零特征值的个数与矩阵A的秩相等,即r(A)=2,从而AX=0的基础解系仅含有一个线性无关的解向量,D是正确的;C不对,因为只有实对称矩阵的不同特征值对应的特征向量正交,一般矩阵不一定有此性质,选C.
转载请注明原文地址:https://kaotiyun.com/show/eYN4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设A是4×3矩阵,且r(A)=2,而则r(AB)=____________.
计算定积分
设A是n×n矩阵,对任何n维列向量x都有AX=0,证明:A=O.
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
计算积分:设求
求极限:
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=∫0sinx2(1-cost)dt,则当x→0时,f(x)是g(x)的().
随机试题
根据骨度分寸,除哪项外。两者间距都是9寸
A.运铁蛋白浓度降低B.血清铁浓度下降C.血红蛋白和红细胞比积下降D.血清铁浓度下降、运铁蛋白浓度降低和游离原卟啉浓度升高E.运铁蛋白浓度降低、游离原卟啉浓度升高符合铁减少期的指标为()
(2010年)下列各点中为二元函数z=x3一y3一3x2+3y一9x的极值点的是()。
下列连续梁(T构)的合龙、体系转换和支座反力调整的规定,符合规范的有()。
流转课税是以流转额为课税对象的税类,流转额包括()。
某企业于2015年5月1日采用融资租赁方式从租赁公司租入一台设备,设备款为50000元,租期为5年,到期后设备归企业所有。企业的资金成本率为10%。若租赁公司提出的租金方案有四个:方案A:每年年末支付15270元,连续付5年。方案B:
在某次旅游安全事故中,造成旅游者3人轻伤,经济损失3万余元,该事故属于()。
归因即对自我行为的原因分析,包括三个成分:内外源、稳定性和______。
为了保证其他主机能接入Internet,在如图1-4所示的host1eth1网卡“Internet连接共享”应如何选择?请为图1-2中eth1网卡配置Internet协议属性参数。IP地址:(1);子网掩码:(2);默认网关
WhenIheardthenoiseinthenextroom,Icouldn’tresisthaveapeep.
最新回复
(
0
)