首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n×n矩阵,对任何n维列向量x都有AX=0,证明:A=O.
设A是n×n矩阵,对任何n维列向量x都有AX=0,证明:A=O.
admin
2018-08-22
79
问题
设A是n×n矩阵,对任何n维列向量x都有AX=0,证明:A=O.
选项
答案
方法一 由于对任何X均有AX=0,取X=[1,0,…,0]
T
,由 [*] 得a
11
=a
21
=…=a
nq
=0. 类似地,分别取X为e
1
=[1,0,…,0]
T
,e
2
=[0,1,0,…,0]
T
,…,e
n
=[0,0,…,1]
T
代入方程,可证每个a
ij
=0,故A=O. 方法二 因对任何X均有AX=0,故有Ae
i
=0,i=1,2,…,n,合并成分块阵,得 [Ae
1
,Ae
2
,…,Ae
n
]=A[e
1
,e
2
,…,e
n
]=AE=A=O. 方法三 因对任何X均有AX=0,故方程基础解系向量个数为n. 又r(A)+n(基础解系向量个数)=n(未知量个数),故有r(A)=0,即A=O.
解析
转载请注明原文地址:https://kaotiyun.com/show/GFj4777K
0
考研数学二
相关试题推荐
设A为n阶矩阵,若Ak-1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak-1α线性无关.
一半球形雪堆融化速度与半球的表面积成正比,比例系数为k>0,设融化过程中形状不变,设半径为r0的雪堆融化3小时后体积为原来的1/8,求全部融化需要的时间.
设函数f(x)可导且0≤f’(x)≤(k>0),对任意的x0,作xn+1=f(xn)(n=0,1,2,…),证明:存在且满足方程f(x)=x.
设f(x,y)=讨论函数f(x,y)在点(0,0)处的连续性与可偏导性.
设矩阵A满足(2E-C-1B)AT=C-1,且,求矩阵A
设A为n阶矩阵,且|A|a≠0,则|(kA)*|=_______.
设方阵A1与B1合同,A2与B2合同,证明:合同
设A=(aij)n×n为实对称矩阵,求二次型函数f(x1,x2,…,xn)=在Rn上的单位球面S:x12+x22+…+xn2=1上的最大值与最小值.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设an为曲线y=xn与y=xn+1(n=1,2,…)所围区域的面积,记.求S1,S2的值.
随机试题
A.化生血液B.促进生长发育C.推动气血的运行D.维持体温的相对恒定E.温养脏腑、肌肉、皮毛营气的生理功能是
某房地产估价师运用市场法和假设开发法对一宗4270m2的商业用地于2007年10月21日的土地使用权价格进行评估,该宗地的剩余使用期限为39年,两种估价方法测算出的结果分别为2000元/m2和2300元/m2。假设2006年10月和2007年10月该区域的
下列影响能力的因素中,()是智力结构转化为物质力量的转换器。
既属于监理工程师应遵守的职业道德,又属于监理工程师义务的是( )。
振动水冲法是利用振冲器的振动和水冲作用加固地基的一种方法,可分为()。
下列关于证券公司设立以及重要事项变更审批要求说法正确的是()
非同一控制下的企业合并,下列说法中正确的有()。
文化馆、图书馆、博物馆、民风民俗等都可以作为课程资源。()
公文标题《国务院关于同意建立不动产登记工作部际联席会议制度的批复》的形式是()。
根据下面材料回答下题。自20世纪末期,山西同全国一样粮食供需形势发生逆转,粮价持续走低,粮食生产效益滑坡,农民生产积极性受挫。2004年年初,中央下发“一号文件”,实施了“一减三补”等一系列惠农政策,之后连续三年出台中央“一号文件”,“保护和加强
最新回复
(
0
)