设p(x),q(x)与f(x)均为连续函数,设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 y"+p(x)y’+q(x)y=f(x) ① 的3个解,且 则式①的通

admin2018-08-22  42

问题 设p(x),q(x)与f(x)均为连续函数,设y1(x),y2(x)与y3(x)是二阶非齐次线性方程
                       y"+p(x)y’+q(x)y=f(x)    ①
的3个解,且
               
则式①的通解为__________.

选项

答案y=C1(y1一y2)+C2(y2一y3)+y1,其中C1,C2为任意常数

解析 由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关即可.
             y1一y2与y2一y3均是式①对应的齐次线性方程
                              y"+p(x)y’+q(x)y=0    ②
的两个解.现证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k1与k2使
                     k1(y1一y2)+k2(y2一y3)=0.    ③
    设k1≠0,又由题设知y2一y3≠0,于是式③可改写为
   
矛盾.若k1=0,由y2一y3≠0,故由式③推知k2=0矛盾.这些矛盾证得y1一y2与y2一y3线性无关.
    于是
               Y=C1(y1一y2)+C2(y2一y3)
为式②的通解,其中C1,C2为任意常数,从而知
                y=C1(y1一y2)+C2(y2一y3)+y1
为式①的通解.
转载请注明原文地址:https://kaotiyun.com/show/bUj4777K
0

最新回复(0)