首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1),求在Y=y条件下关于X的条件概率密度.
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1),求在Y=y条件下关于X的条件概率密度.
admin
2017-10-25
55
问题
设随机变量X服从标准正态分布N(0,1),在X=x(一∞<x<+∞)的条件下,随机变量Y服从正态分布N(x,1),求在Y=y条件下关于X的条件概率密度.
选项
答案
依题意,X的概率密度为 f
X
(x)=[*]. 在X=x的条件下,关于Y的条件概率密度为 f
Y|X
(y|x)=[*]. 根据条件概率密度的定义可得X与Y的联合概率密度为 f(x,y)=f
X
(x).f
Y|X
(y|x)=[*]. 根据二维正态分布的性质可知,二维正态分布(X,y)的边缘分布是一维正态分布,于是y的概率密度为 f
Y
(y)=[*]. 根据条件密度的定义可得 f
X|Y
(x|y)=[*]. 进一步分析,可将f
X|Y
(x|y)改写为如下形式: f
X|Y
(x|y)=[*]. 从上面式子可以看出,在Y=y条件下关于X的条件分布是正态分布[*].
解析
依题意已知X的分布及关于Y的条件分布,因此我们很容易求出X与Y的联合分布,然后直接应用条件密度公式求f
X|Y
(x|y).
转载请注明原文地址:https://kaotiyun.com/show/ebX4777K
0
考研数学三
相关试题推荐
[*]故u仅是r的函数,即u不含θ与φ.
设(ay一2xy2)dx+(bx2y+4x+3)dy为某个二元函数的全微分,则a=________,b=________。
设随机变量X服从参数为2的指数分布,证明:Y=1一e-2X在区间(0,1)上服从均匀分布.
设x的密度函数为fX(x)=的密度fY(y).
设一电路由三个电子元件串联而成,且三个元件工作状态相互独立,每个元件的无故障工作时间服从参数为λ的指数分布,设电路正常工作的时间为T,求T的分布函数.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设总体X~N(μ,σ2),X1,X2,…,Xn是来自总体X的样本,S2=,则D(S2)=________.
设f(x)∈C[0,1],f(x)>0.证明积分不等式:ln∫01f(x)dx≥∫01lnf(x)dx.
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0
设随机变量X在(0,3)内随机取值,而随机变量y在(X,3)内随机取值,求协方差Cov(X,Y).
随机试题
分析辛弃疾《摸鱼儿》(更能消、几番风雨)一词比兴、象征手法的运用。
端粒是
乳腺MRI扫描的特点是
A.慢性萎缩性胃炎B.胃淀粉样变性C.Menetrier病D.疣状胃炎E.非感染性肉芽肿性胃炎病理表现为胃小凹延长扭曲,深处有囊样扩张,伴壁细胞和主细胞减少,胃黏膜层明显增厚的是
跟腱反射,是检查
钢结构的主要缺点之一是()。
发达国家的国债负担率警戒线为()。
行政许可是指行政机关根据公民、法人或者其他组织的申请,经依法审查,准予其从事特定活动的行为。根据上述定义,下列属于行政许可的是()。
在名称为Forml的窗体上设计一个菜单。要求在窗体上添加名为menu0,标题为“菜单命令”的主菜单,再添加两个名称分别为“menul”、“menu2”,标题分别为“不可用菜单项”、“上一菜单项可用”的子菜单,并且使程序运行时,menul子菜单不可用,men
HowShouldTeachersBeRewarded?[A]Weneverforgetourbestteachers—thosewhoinspireduswithadeeperunderstandingor
最新回复
(
0
)