首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, (1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, (1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
admin
2014-01-26
55
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,一3,5,1)
T
,α
3
=(3,2,-1,p+2)
T
,α
4
=(-2,-6,10,p)
T
,
(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)
T
用α
1
,α
2
,α
3
,α
4
线性表出;
(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
选项
答案
由于行列式 [*] 可见 (1)当p≠2时,向量组α
1
,α
2
,α
3
,α
4
线性无关.此时设 α=x
1
α
1
,x
2
α
2
,x
3
α
3
,x
4
α
4
, 对矩阵[α
1
,α
2
,α
3
,α
4
|α]作初等行变换: [*] 解得 x
1
=2,[*]。 (2)当p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关.此时向量组的秩等于3,α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
[分析] 由于向量的个数与维数相等,该向量组是否线性相关,可由其对应的行列式是否为零来判断.至于α用α
1
,α
2
,α
3
,α
4
线性表出,实质上是讨论方程组的解的问题.
[评注] 一个向量是否可用一组向量线性表示,相当于对应的非齐次线性方程组是否有解,因此可以说,这两个问题是等价的.故在讨论与此相关的问题时,应注意它们之间的这种转换关系.
转载请注明原文地址:https://kaotiyun.com/show/eh34777K
0
考研数学二
相关试题推荐
(11年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限
(2000年)设A,B是两个随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是【】
[2012年]曲线渐近线的条数为().
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为_______.
[2016年]求极限
求极限
随机试题
婴儿出现(),如出血位置无法压迫,可让婴儿躺下,用拳头或手掌根部把出血的血管压向对侧的骨头方向。
常见的肛周脓肿是
治疗阴虚内热型内伤发热的首选方剂是
可能的诊断是若需要应采取的正确预防措施是
喜欢买报纸的人、常常________于报刊亭的人必然有着阅读的兴趣并养成了习惯,这样的行为不仅影响着个人的生活,也在________中影响着他人。将报刊亭打造成一个公共的阅读空间,就像现在随处可见的自助K歌房一样,这种________又便捷的阅读点,激发的
典型欠阻尼二阶系统超调量大于5%,则其阻尼ξ的范围为()。
从各国保险立法来看,关于投保人或被保险人的告知方式一般分为以下两种,即()。
某企业2011年年底“应付账款”科目月末贷方余额20000元,其中:“应付甲公司账款”明细科目贷方余额15000元,“应付乙公司账款”明细科目贷方余额5000元;“预付账款”科目月末贷方余额10000元,其中:“预付账款——甲工厂”明细科目贷方余额
Manystudentsfindtheexperienceofattendinguniversitylecturestobeareallyconfusingand【C1】______experience.Thelecture
Ithasbeenproventhatshortburstsofconcentrationrepeatedfrequentlyaremuchmore【B1】______thanonelongperiod.So,even
最新回复
(
0
)