首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, (1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T, (1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
admin
2014-01-26
67
问题
设向量组α
1
=(1,1,1,3)
T
,α
2
=(-1,一3,5,1)
T
,α
3
=(3,2,-1,p+2)
T
,α
4
=(-2,-6,10,p)
T
,
(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)
T
用α
1
,α
2
,α
3
,α
4
线性表出;
(2)p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大线性无关组.
选项
答案
由于行列式 [*] 可见 (1)当p≠2时,向量组α
1
,α
2
,α
3
,α
4
线性无关.此时设 α=x
1
α
1
,x
2
α
2
,x
3
α
3
,x
4
α
4
, 对矩阵[α
1
,α
2
,α
3
,α
4
|α]作初等行变换: [*] 解得 x
1
=2,[*]。 (2)当p=2时,向量组α
1
,α
2
,α
3
,α
4
线性相关.此时向量组的秩等于3,α
1
,α
2
,α
3
(或α
1
,α
3
,α
4
)为其一个极大线性无关组.
解析
[分析] 由于向量的个数与维数相等,该向量组是否线性相关,可由其对应的行列式是否为零来判断.至于α用α
1
,α
2
,α
3
,α
4
线性表出,实质上是讨论方程组的解的问题.
[评注] 一个向量是否可用一组向量线性表示,相当于对应的非齐次线性方程组是否有解,因此可以说,这两个问题是等价的.故在讨论与此相关的问题时,应注意它们之间的这种转换关系.
转载请注明原文地址:https://kaotiyun.com/show/eh34777K
0
考研数学二
相关试题推荐
[2018年]已知总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,σ为大于0的参数,记σ的最大似然估计量为求
[2015年]设矩阵相似于矩阵求a,b的值;
(87年)假设D是矩阵A的r,阶子式,且D≠0,但含D的一切r+1阶子式都等于0.那么矩阵A的一切r+1阶子式都等于0.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限
求幂级数的收敛域及和函数
(03年)设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正
(13年)设曲线y=f(χ)与y=χ2-χ在点(1,0)处有公共切线,则=_______.
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2.则当a=_______,b=_______时,统计量X服从χ2分布,其自由度为_______.
求极限
设F(χ)=∫χχ+2πesintsintdt,则F(χ)().
随机试题
对于同一个消费者来说,同样数量的商品总是提供同量的效用。()
A.申脉、丘墟、解溪B.膝眼、梁丘、膝阳关C.曲池、小海、天井D.阳溪、阳池、阳谷E.环跳、秩边、承扶
能诱发甲亢的抗甲状腺药是()。
下面关于国际经济合作的说法中,错误的是()。
根据企业所得税法的规定,以下属于小型微利企业减按20%征收所得税条件的是()。
教育学属于()。
多媒体.是一种以计算机为中心的多种媒体的有机组合,这些媒体包括文本、图形图像、动画、视频和音频等,并具有一定的主动性和()。
“十三五”规划首次把()内容列入新的目标要求。
BilledastheSiliconValleyRobotBlockPartyandheldduringNationalRoboticsWeek,thepartyyesterdaywasacelebrationof
Lifeisdifficult.Itisagreattruthbecauseoncewetrulyunderstandandacceptit,thenlifeisnolongerdifficult.
最新回复
(
0
)