首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(11年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α
(11年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α
admin
2021-01-25
76
问题
(11年)设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
(Ⅰ)求a的值;
(Ⅱ)将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
(Ⅰ)4个3维向量β
1
,β
2
,β
3
,β
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而 0=|β
1
,β
2
,β
3
|=[*]=a-5, 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示. (Ⅱ)令矩阵A=[α
1
α
2
α
3
[*] β
1
β
2
β
3
],对A施行初等行变换 [*] 从而,β
1
=2α
1
+4α
2
-α
3
,β
2
=α
2
+2α
1
,β
3
=5α
1
+10α
2
-2α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/gfx4777K
0
考研数学三
相关试题推荐
已知是矩阵的一个特征向量.试确定参数a,b及特征向量ξ所对应的特征值;
设矩阵其行列式|A|=-1.又A*有一个特征值λ0,属于λ0的一个特征向量为α=[-1,-1,1]T.求a,b,c和λ0的值.
已知四阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,且α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=__________.
已知A=,求可逆矩阵P,化A为标准形A,并写出对角矩阵A
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
(00年)设0.50,1.25,0.80,2.00是来自总体X的简单随机样本值.已知Y=lnX服从正态分布N(μ,1).(1)求X的数学期望EX(记EX为b);(2)求μ的置信度为0.95的置信区间;(3)利用上述结果求b的置
(1994年)设函数y=y(x)满足条件,求广义积分∫0+∞y(x)dx.
(1996年)设其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一11)求f’(x);2)讨论f’(x)在(一∞,+∞)上的连续性.
随机试题
已知三阶矩阵B≠0,且B的每一个列向量都是以下方程组的解:(Ⅰ)求λ值;(Ⅱ)证明∣B∣=0.
讨论第三方支付模式目前仍然存在哪些问题。
为提高低负荷时的计量准确性:应选用过载为多少倍的电能表?
公司债券作为公司为筹措资金而公开负担的一种债务契约,其特征为()
房产不在同一地的纳税人,应( )的税务机关缴纳房产税。
古希腊学者阿基米德在浴缸洗澡时突然发现浮力定律,解决了“王冠之谜”。这种思维是()。
(2006年试题,一)设矩阵单位矩阵,矩阵B满足BA=B+2E则|B|=_________.
DeconstructionRatherThanDemolitionbyDanielRossArlington(May8)-Asmentionedinlastweek’sarticle,attheendofabuil
Threeweeksago,astorywepublishedputusinthemiddleofacontroversy.Itwashardlythefirsttimethathashappened,but
PASSAGEONEWhydidthegirlplaybasketballoverandoveragain?
最新回复
(
0
)