首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(11年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α
(11年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示. (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3用α1,α2,α
admin
2021-01-25
74
问题
(11年)设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示.
(Ⅰ)求a的值;
(Ⅱ)将β
1
,β
2
,β
3
用α
1
,α
2
,α
3
线性表示.
选项
答案
(Ⅰ)4个3维向量β
1
,β
2
,β
3
,β
i
线性相关(i=1,2,3),若β
1
,β
2
,β
3
线性无关,则α
i
可由β
1
,β
2
,β
3
线性表示(i=1,2,3),这与题设矛盾,于是β
1
,β
2
,β
3
线性相关,从而 0=|β
1
,β
2
,β
3
|=[*]=a-5, 于是a=5.此时,α
1
不能由向量组β
1
,β
2
,β
3
线性表示. (Ⅱ)令矩阵A=[α
1
α
2
α
3
[*] β
1
β
2
β
3
],对A施行初等行变换 [*] 从而,β
1
=2α
1
+4α
2
-α
3
,β
2
=α
2
+2α
1
,β
3
=5α
1
+10α
2
-2α
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/gfx4777K
0
考研数学三
相关试题推荐
证明曲线上任一点的切线的横截距与纵截距之和为2.
设f(x)在[0,1]上有定义,且exf(x)与e-f(x)在[0,1]上单调增加.证明:f(x)在[0,1]上连续.
已知四阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,且α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
设A=,且存在正交矩阵Q使得QTAQ为对角矩阵。若Q的第一列为(1,2,1)T,求a,Q。
先求[*]而且f(x)是一元函数f(u)与二元函数u=xy的复合,u是中间变量;φ(xy)是一元函数φ(υ)与二元函数υ=x+y的复合,υ是中间变量。由于[*]方便,由复合函数求导法则得[*]
在△ABC中任取一点P,而△ABC与△ABP的面积分别记为S与S1。若已知S1=12,求ES1。
(14年)设A=,E为3阶单位矩阵.(Ⅰ)求方程组Aχ=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
[2015年]设总体X的概率密度为:其中θ为未知参数,X1,X2,…,Xn为来自该总体的简单随机样本.求θ的最大似然估计量.
设z=z(x,y)二阶连续可偏导且满足方程,在变换下,原方程化为,求a,b的值.
(1996年)求微分方程的通解.
随机试题
甲有父亲、母亲、配偶(机关干部)、儿子(工程师)、女儿(小学音乐教师)各一人。甲去世,留有遗产,房屋6间、荷款5000元、古字画10件和钢琴一架。甲生前自书遗嘱指定:房产归妻子和儿女继承,古字画赠给文物部门。对存款和钢琴遗嘱未作处理。现甲的女儿提出要将钢琴
链霉素急性中毒出现口唇、面部及四肢麻木感,严重时出现呼吸抑制,解救的药物是( )
(2009年)在如下关系信号和信息的说法中,正确的是()。
地下防水工程施工期间,明挖法的基坑必须保持地下水位至少稳定在基底()m以下。
转增股本,投资者持有的股票数会增加。()
欧美发达国家的保险实践表明,通常购买保险产品是有效的税收筹划方法。()
如果中国政府在美国纽约发行一笔美元债券,则该笔债券属于()的范畴。
21世纪以来形成的全面营销观念主要涉及的方面不包括()。
我国校对工作的基本制度包括()等。
ThougheverymorningIqueue(排队)atthebusstopveryearly,Iamoften(41)forschool.Thereasonisthatthereare(42)
最新回复
(
0
)