首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
admin
2021-01-25
41
问题
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关.设β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.试讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
假设有一组数x
1
,x
2
,…,x
s
,使得 x
1
β
1
+x
2
β
2
+…x
s
β
s
=0将题设的线性表示式代人上式并整理,得 (x
s
+x
1
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0由于α
1
,α
2
,…,α
s
线性无关,故有 [*]此方程组的系数行列式为s阶行列式: [*]因此有 (1)若s为奇数,则D=2≠0,故方程组(*)只有零解,即x
1
,x
2
,…,x
s
必全为0.这时,β
1
,β
2
,…,β
s
线性无关; (2)若s为偶数,则D=0,故方程组(*)有非零解,即存在不全为0的一组数x
1
,x
2
,…,x
s
,使x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0.这时,向量组β
1
,β
2
,…,β
s
线性相关.
解析
本题考查向量组线性相关与线性无关的基本概念.注意本题问题归结为齐次方程组(*)是存在非零解还是只有零解的问题,亦即方程组(*)的系数矩阵的秩是小于s还是等于s的问题.运用本题的推导方法,可证明下述的一般结论:
设向量组α
1
,α
2
,…,α
r
,线性无关,又有(其中α
ij
为常数,i=1,…,r;j=1,…,s)
β
1
=α
11
α
1
+α
21
α
2
+…+α
r1
lα
r
β
2
=α
12
α
1
+α
22
α
2
+…+α
r2
α
r
… β
s
=α
1s
α
1
+α
2s
α
2
+…+α
rs
α
r
则向量组β
1
,β
2
,…,β
s
线性无关<=>矩阵A=(α
ij
)
r×s
的秩为s.
转载请注明原文地址:https://kaotiyun.com/show/rux4777K
0
考研数学三
相关试题推荐
(1997年)设函数f(x)在[0,+∞)上连续.单调不减且f(0)≥0.试证函数在[0,+∞)上连续且单调不减(其中n>0)
(96年)考虑一元二次方程χ2+Bχ+C=0,其中B、C分别是将一枚骰子连掷两次先后出现的点数,求该方程有实根的概率P和有重根的概率q.
(93年)设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障运行8小时的概率Q.
设λ1,λ2是n阶方阵A的两个不同特征值,x1,x2分别是属于λ1,λ2的特征向量.证明:x1+x2不是A的特征向量.
设三阶矩阵A的特征值为λ1=一1,λ2=,λ3=,其对应的特征向量为α1,α2,α3,令P=(2α3,一3α1,一α2),则P一11(A一1+2E)P=________.
设f(x)在x=0处连续,且=一1,则曲线y=f(x)在(2,f(2))处的切线方程为________.
设常数=___________.
曲线y=lnx上与直线x+y=1垂直的切线方程为_____.
连续函数f(x)满足f(x)=3∫0xf(x-t)dt+2,则f(x)=______.
随机试题
耐火等级为三级单、多层民用建筑,防火分区最大允许建筑面积为()m2。
—Iamsorrytoputyouintosomuchtrouble.—______.
急性胆囊炎的典型体征是
患儿血清铁蛋白降低,红细胞游离原卟啉正常,未出现贫血表现。此为哪个阶段表现
严禁与青霉素类同时配伍应用的约物是
没有仪表着陆系统的跑道,当下滑航道角为3°时,灯具光束仰角是()。
背景材料:某隧道为上、下行双线四车道隧道,其中左线长858m,右线长862m,隧道最大埋深98m,净空宽度9.64m,净空高度6.88m,设计车速为100km/h,其中YK9+928~YK10+004段为V级围岩,采用环形开挖留核心土法施工,开挖进尺为3
每当学生请教课堂上没听懂的问题时,李老师总是批评学生没有用心听讲,而雷老师则会耐心地给学生解答。两位教师的不同做法反映了()。
用于记载会议主要精神和议定事项的公文是()。
DealingwithLifeAbroadIntroduction.millionsofpeoplegoabroadtowork,studyortravel.symptomsofculture
最新回复
(
0
)