首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
已知向量组α1,α2,…,αs(s≥2)线性无关.设β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.试讨论向量组β1,β2,…,βs的线性相关性.
admin
2021-01-25
53
问题
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关.设β
1
=α
1
+α
2
,β
2
=α
2
+α
3
,…,β
s-1
=α
s-1
+α
s
,β
s
=α
s
+α
1
.试讨论向量组β
1
,β
2
,…,β
s
的线性相关性.
选项
答案
假设有一组数x
1
,x
2
,…,x
s
,使得 x
1
β
1
+x
2
β
2
+…x
s
β
s
=0将题设的线性表示式代人上式并整理,得 (x
s
+x
1
)α
1
+(x
1
+x
2
)α
2
+…+(x
s-1
+x
s
)α
s
=0由于α
1
,α
2
,…,α
s
线性无关,故有 [*]此方程组的系数行列式为s阶行列式: [*]因此有 (1)若s为奇数,则D=2≠0,故方程组(*)只有零解,即x
1
,x
2
,…,x
s
必全为0.这时,β
1
,β
2
,…,β
s
线性无关; (2)若s为偶数,则D=0,故方程组(*)有非零解,即存在不全为0的一组数x
1
,x
2
,…,x
s
,使x
1
β
1
+x
2
β
2
+…+x
s
β
s
=0.这时,向量组β
1
,β
2
,…,β
s
线性相关.
解析
本题考查向量组线性相关与线性无关的基本概念.注意本题问题归结为齐次方程组(*)是存在非零解还是只有零解的问题,亦即方程组(*)的系数矩阵的秩是小于s还是等于s的问题.运用本题的推导方法,可证明下述的一般结论:
设向量组α
1
,α
2
,…,α
r
,线性无关,又有(其中α
ij
为常数,i=1,…,r;j=1,…,s)
β
1
=α
11
α
1
+α
21
α
2
+…+α
r1
lα
r
β
2
=α
12
α
1
+α
22
α
2
+…+α
r2
α
r
… β
s
=α
1s
α
1
+α
2s
α
2
+…+α
rs
α
r
则向量组β
1
,β
2
,…,β
s
线性无关<=>矩阵A=(α
ij
)
r×s
的秩为s.
转载请注明原文地址:https://kaotiyun.com/show/rux4777K
0
考研数学三
相关试题推荐
[2004年]设A,B为两个随机事件,且P(A)=1/4,P(B|A)=1/3,P(A|B)=1/2,令求Z=X2+Y2的概率分布.
[*]
(2005年)求幂级数在区间(一1,1)内的和函数S(x)。
连续函数f(x)满足f(x)=3∫0xf(x—t)dt+2,则f(x)=__________.
从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P{Y=2}=____________.
在xOy平面上,平面曲线方程y=,则平面曲线与x轴的交点的坐标是______
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz=________。
设则级数
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
(1999年试题,十)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,证明数列{an}的极限存在.
随机试题
下面关于随机存取存储器(RAM)的叙述中,正确的是
楼内配线电缆设计的满足年限应为()。
进行现况调查研究时,调查时间通常确定在
与市场比较法关系最为密切的房地产价格形成原理是()。
下列方面发生较大设计变更需征得原可行性研究报告批复部门同意的是()。
钢筋混凝土灌注桩按其成孔方法不同,可分为()和挖孔扩底灌注桩等。
关于总杠杆系数,下列说法不正确的是()。
当抵押权与其他物权并存时,下列说法正确的有()。
凡是有利于两岸关系和平发展的事都应该大力推动,凡是破坏两岸关系和平发展的事都必须坚决反对。据此,可以推出()。
结合材料回答问题:材料1共享经济成两会关键热词为何“共享单车”却乱象不止?在2017年的“两会”热词中,最显眼的一个热词那就是最近被炒得火热的“共享经济”。据权威数据统计.2016年有30多家公司进军共享单车领域。但是,快
最新回复
(
0
)