首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上可导,∫01f(x)dx=∫01xf(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
设f(x)在[0,1]上可导,∫01f(x)dx=∫01xf(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
admin
2017-07-26
55
问题
设f(x)在[0,1]上可导,∫
0
1
f(x)dx=∫
0
1
xf(x)dx=0,试证:存在点ξ∈(0,1),使得f’(ξ)=0.
选项
答案
作辅助函数F(x)=∫
0
x
f(t)dt,则F(x)在[0,1]上连续,在(0,1)内可导,且F(0)=F(1)=0,又0=∫
0
1
xf(x)dx=∫
0
1
xdF(x)=xF(x)|
0
1
—∫
0
1
F(x)dx=0,由积分中值定理,存在点η∈(0,1),使得F(η)=0.于是,在[0,η]和[η,1]上分别对F(x)应用洛尔定理,存在点ξ
1
∈(0,η),ξ
2
∈(η,1),使得f(ξ
1
)=f(ξ
2
)=0. 在[ξ
1
,ξ
2
]上对f(x)再应用洛尔定理,存在点ξ∈(ξ
1
,ξ
2
)[*](0,1),使得f’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/euH4777K
0
考研数学三
相关试题推荐
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____________.
设A是m×n阶矩阵,下列命题正确的是().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
x)在(一∞,+∞)上连续,且f(x)=∫0xf(t)出,试证:f(x)=0(-∞<x<+∞).
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
试证明:曲线恰有三个拐点,且位于同一条直线上.
设试证明:P(A)+P(B)一P(C)≤1.
随机试题
Evenwhenshedidn’tknowwhatshe______about,shespokemoreauthoritativelythanmostpeopledid.
Evenstudentsofaverageintelligencecanbecometopstudentsbyimprovingtheirstudyhabits.
患者口干唇燥,口渴多饮,尿频量多,混浊如脂膏,时或烦躁,遗精,舌质红,脉沉细数。治疗选用
最早引起膀胱刺激征的疾病是
糖原合成时,葡萄糖基的直接供体是
国家各级药品监督管理部门应当定期
王某家中有一幅珍藏字画,为了防止字画被盗给自己造成损失,王某于2008年6月与A保险公司签订了财产保险合同,投保了盗窃险。经过评估,该字画价值为400万元,并记载在合同中作为保险价值,后王某认为市场行情在未来会有大幅上涨,要求将保险金额约定为500万元。为
关于SIP协议中BYE消息的描述中,正确的是()。
Peopleoftenlaughwhentheyseepenguinswalking.Penguinslookveryfunnywaddlefromsidetosideontheirshortlittlelegs.
TheAbortionClinicShootings:Why?A)Asthenationheardwithsorrowthenewsofthedeplorableshootingspreeatabortionfaci
最新回复
(
0
)