首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令 其中选常数C0,使得F(x)在x=c处连续. 就下列情形回答F(x)是否是f(x)在(a,b)的原函
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令 其中选常数C0,使得F(x)在x=c处连续. 就下列情形回答F(x)是否是f(x)在(a,b)的原函
admin
2019-01-23
66
问题
设f(x)定义在(a,b)上,c∈(a,b),又设H(x),G(x)分别在(a,c],[c,b)连续,且分别在(a,c)与(c,b)是f(x)的原函数.令
其中选常数C
0
,使得F(x)在x=c处连续.
就下列情形回答F(x)是否是f(x)在(a,b)的原函数.
(Ⅰ)f(x)在点x=c处连续;
(Ⅱ)点x=c是f(x)的第一类间断点;
(Ⅲ)点x=c是f(x)的第二类间断点.
选项
答案
(Ⅰ)F′(c)=[*]f(x)=f(c), 因此,F(x)是f(x)在(a,b)的原函数. (Ⅱ)F(x)不是f(x)在(a,b)的原函数,因为在这种情形下f(x)在(a,b)不存在原函数. (Ⅲ)在这种情形下结论与f(x)的表达式有关,需要对问题作具体分析.
解析
关键就看是否有F′(c)=f(c).
转载请注明原文地址:https://kaotiyun.com/show/f5M4777K
0
考研数学一
相关试题推荐
设离散型随机变量X只取一1,2,π三个可能值,取各相应值的概率分别是a2,一a与a2,求X的分布函数.
设P(x,y,z),Q(x,y,z),R(x,y,z)在区域Ω连续,г:x=x(t),y=y(t),z=z(t)是Ω中一条光滑曲线,起点A,终点B分别对应参数tA与tB,又设在Ω上存在函数u(x,y,z),使得du=Pdx+Qdy+Rdz(称为Pdx+
设X1,X2,…X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=aX12+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2。服从χ2分布,并求自由度m.
求证:曲率半径为常数a的曲线是圆.
已知y1*=xex+e2x,y2*=xex+e—x,y3*=xex+e2x—e—x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
设(I)求f(x)以2π为周期的傅氏级数,并指出其和函数S(x);(Ⅱ)求
已知是f(x)的一个原函数,求.
已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ξ2=4,求a,b的值和正交矩阵P.
设当x→0时,f(x)=∫0x2ln(1+t)dt~g(x)=xa(ebx一1),求a,b的值.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).|E+A+A2+…+An|的值.
随机试题
系统
A.膈神经麻痹B.气胸C.二者均有D.二者均无(2003年第128题)臂丛神经阻滞锁骨上径路,可能发生的并发症有
甲花4万元收买被拐卖妇女周某做智障儿子的妻子,周某不从,伺机逃走。甲为避免人财两空,以3万元将周某出卖。(事实一)乙收买周某,欲与周某成为夫妻,周某不从,乙多次暴力强行与周某发生性关系。(事实二)不久,周某谎称怀孕要去医院检查,乙信以为
下列风险中,属于业主或投资商风险的有()。
民主革命时期,著名的()清算了王明“左”倾教条主义在党内的统治,确立了毛泽东同志在党和红军中的领导地位。
中国古代著名的三大特产是()。
10ln3.
关于下列应用程序的描述中,哪个说法是正确的______。
考生文件夹下存在两个Python源文件PY30H.Py和PY301—2.Py,分别对应两个问题,请按照文件内说明修改代码,实现以下功能:《傲慢与偏见》是史上最震撼人心的“世界文学十部最佳小说之一”。第一章的内容由考生文件夹下文件arrogant.
Thefollowingareallcorrectresponsesto"Howdoyoulikethestory?"EXCEPT
最新回复
(
0
)