首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt=|(x,y)|0≤x≤t,0≤y≤f(x)|(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt=|(x,y)|0≤x≤t,0≤y≤f(x)|(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
admin
2017-08-18
105
问题
设f(x)为连续正值函数,x∈[0,+∞),若平面区域R
t
=|(x,y)|0≤x≤t,0≤y≤f(x)|(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与
之和,求f(x).
选项
答案
(I)列方程.按平面图形的形心公式,形心的纵坐标为 [*] 而相应的曲边梯形的面积为∫
0
t
f(x)dx.见图6.2.按题意 [*] (II)转化.将方程①两边求导,则 方程①[*]f
2
(t)=4f(t)∫
0
t
f(x)dx+f(t) [*]f(t)=4∫
0
t
f(x)dx+1 (①中令x=0,等式自然成立,不必另加条件)· f(x)实质上是可导的,再将方程②两边求导,并在②中令t=0得 方程①[*] ③ (Ⅲ)求解等价的微分方程的初值问题③.这是一阶线性齐次方程的初值问题,两边乘μ(t)= [*]得[f(t)e
—4t
]’=0,并由初始条件得f(t)=e
4t
,即f(x)=e
4x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/WIr4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]有连续导数,且f(0)=0,令,则必有
设X1,X2,…,Xn是取自总体X的一个简单随机样本,X的概率密度为求未知参数θ的矩估计量;
设f(x,y)在(x0,y0)某邻域有定义,且满足:f(x,y)=f(x0,y0)+a(x一x0)+b(y—y0)+a(ρ)(ρ→0),其中a,b为常数.则
设矩阵,则下列矩阵中与矩阵A等价、合同但不相似的是
设F(c,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
下列三个命题①设的收敛域为(一R,R),则的收敛域为(一R,R);②没幂级数条件收敛,则它的收敛半径R=1;③设幂级数的收敛半径分别为R1,R2,则的收敛半径R=min(R1,R2)中正确的个数是
设正项级数收敛,正项级数发散,则①必收敛.②必发散.③必收敛.④必发散.中结论正确的个数为()
(2004年试题,三)设有方程xn+nx一1=0,其中n为正整数.证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
下列无穷小中阶数最高的是().
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状,若它在进入大气层开始燃烧的前3s内,减少了体积的,问
随机试题
某大(2)型水利枢纽工程,其施工过程中采用的围堰类型为不过水的土石围堰,则其围堰堰顶安全加高最低为()m。
设常数a∈[0,1],随机变量X~U[0,1],Y=|X-a|,则E(XY)=________.
过盈装配的压入配合时,压入过程必须连续压入速度以2~4mm/s为宜。()
A.自发性、阵发性痛、有夜间痛B.遇冷、热、酸、甜酸痛,无自发痛C.一过性、刀割样剧痛,无夜间痛D.冷刺激可使疼痛缓解,热刺激加重E.持续性痛三叉神经痛的特点为
人称“梅妻鹤子”,死后,宋仁宗赐“和靖先生”的是()。
辩证唯物主义之所以是唯一科学的世界观,是因为()。
“曲高和寡”出自战国宋玉的《对楚王问》,这一成语的本义是曲调高深,能跟着唱的人就少,多指知音难得。引申义是言论或作品不通俗,能了解的人很少。如果从经济学的角度来理解,它所体现出的道理是:
WhenIwaswalkingdownthestreettheotherday,Ihappenedtonoticeasmallbrownleatherwalletlyingonthesidewalk.Ipic
A.becauseB.experienceC.pushedintoD.objectionsE.protestedF.complaintsG.opposeH.losingI.thatJ.successful
LibraryThelibraryisaplacewherebooks,journals,microfilms,audioandvisualmaterialsarekeptandorganizedtosuppo
最新回复
(
0
)