首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2一a3,向量b=a1+a2+a3+a4,求方程组Ax=b的通解。
admin
2019-01-19
85
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
一a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程组Ax=b的通解。
选项
答案
已知a
2
,a
3
,a
4
线性无关,则r(A)≥o又由a
1
,a
2
,a
3
线性相关可知a
1
,a
2
,a
3
,a
4
线性相关, 故r(A)≤3。 综上所述,r(A)=3,从而原方程组的基础解系所含向量个数为4—3=1。又因为 a
1
=2a
2
一a
3
[*]a
1
—2a
2
+a
3
=0[*](a
1
,a
2
,a
3
,a
4
)[*]=0, 所以x=(1,一2,1,0)
T
是方程组Ax=0的基础解系。 又由b=a
1
+a
2
+a
3
+a
4
可知x=(1,1,1,1)
T
是方程组Ax=b的一个特解。 于是原方程组的通解为 x=(1,1,1,1)
T
+c(1,一2,1,0)
T
,c∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/fBP4777K
0
考研数学三
相关试题推荐
确定常数a=_______,b=_______,c=_______的值,使=c(c≠0)
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
将下列函数展开为χ的幂级数.
差分方程6yt+1+9yt=3的通解为_______.
设n维实向α=(α1,α2,…,αn)T≠0,方阵A=ααT.(1)证明:对于正整数m,存在常数t,使Am=tm-1A,并求出t;(2)求可逆矩阵P,使P-1AP成对角矩阵.
已知二次曲面方程χ2+ay2+z2+2bχy+2χz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4.求a,b的值和正交矩阵P.
曲线y—xey=1在x=0处的法线方程为_________.
求极限(用定积分求极限).
求解微分方程满足条件y(0)=0的特解.
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1+β2|等于()
随机试题
试述常用冷裂纹直接试验方法的应用范围?
集中量数
能使机体冠脉血流量减少的是
A.B.C.D.E.黄芩苷的苷元结构是()。
某甲涉嫌人室抢劫一案由A市人民检察院承办,在承办过程中承办人员万检察官受人请托隐瞒某甲的犯罪事实,最后形成以盗窃罪对某甲提起公诉的意见。此意见经该案主管人员李检察官审核批准。就该执法过错而言,万检察官和李检察官应该如何承担责任?()
中国人民银行向一级交易商卖出有价证券,并约定在未来特定日期买回有价证券的交易行为称为( )。
小华将零度的冰块放到零度的水里,如果它们不与外界发生热传递,那么小华能观察到的现象是()。
科学院:研究已经证明使用自然方法可以使一些管理经营良好的农场在不明显降低产量,甚至某些情况下可以在提高产量的基础上,减少合成肥料、杀虫剂以及抗生素的使用量。批评家:不是这样的。科学院选择用以研究的农场似乎是使用自然方法最有可能取得成功的农场。那些尝
StandardEnglishisthevarietyofEnglishwhichisusuallyusedinprintandwinchisnormallytaughtinschoolsandtonon-nat
CollegesandUniversities,institutionsofhighereducationthatofferprogramsbeyondthehighschoollevel.Collegesanduniv
最新回复
(
0
)