首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)与g(χ)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明: (b-a)∫abf(χ)g(χ)dχ≥∫abf(χ)dχ∫abg(χ)dχ. (*)
设f(χ)与g(χ)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明: (b-a)∫abf(χ)g(χ)dχ≥∫abf(χ)dχ∫abg(χ)dχ. (*)
admin
2016-10-21
85
问题
设f(χ)与g(χ)在[a,b]上连续,且同为单调不减(或同单调不增)函数,证明:
(b-a)∫
a
b
f(χ)g(χ)dχ≥∫
a
b
f(χ)dχ∫
a
b
g(χ)dχ. (*)
选项
答案
引进辅助函数 F(χ)=(χ-a)∫
a
χ
(t)g(t)dt-∫
a
χ
f(t)dt∫
a
χ
g(t)dt 转化为证明F(χ)≥0(χ∈[a,b]). 由F(a)=0, F′(χ)=∫
a
χ
f(t)g(t)dt+(χ-a)f(χ)g(χ)-f(χ)∫
a
χ
g(t)dt-g(χ)∫
a
χ
f(t)dt =∫
a
χ
f(t)[g(t)-g(χ)]dt-∫
a
χ
f(χ)[g(t)-g(χ)]dt =∫
a
χ
[f(t)-f(χ)][g(t)-g(χ)]dt≥0(χ∈[a,b]) 其中(χ-a)f(χ)g(χ)=∫
a
χ
f(χ)g(χ)dt,我们可得F(χ)在[a,b]单调不减[*]F(χ)≥F(a)=0(χ∈[a,b]),特别有 F(b)≥0 即原式成立.
解析
转载请注明原文地址:https://kaotiyun.com/show/fHt4777K
0
考研数学二
相关试题推荐
把x→0+时的无穷小量α=∫0xcost2dt,β=sint3dt排列起来,使得排在后面的是前一个的高阶无穷小,则正确的排列次序是________。
设f(x)是(-∞,+∞)上的非零函数,对任意x,y∈(-∞,+∞)有f(x+y)=f(x)f(y),且f’(0)=1,证明f’(x)=f(x)。
曲线sin(xy)+ln(y-x)=x在点(0,1)处的切线方程为________。
设=________。
求下列三角函数的不定积分。∫sinxsin3xdx
设F1(x),F2(x)是区间I内连续函数f(x)的两个不同的原函数,且f(x)≠0,则在区间I内必有________。
求极限
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内存在点ξ,使得.
已知二次型f(x1,x2,x3)=(1-a)x22+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求n的值;
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
随机试题
反义词
狭义地讲,指数是反映不能直接相加的多种事物数量综合变动情况的()
A.厚朴、枳实B.枳实、甘草C.甘草、人参D.人参、芍药E.芍药、柴胡四逆散与逍遥散均含有的药物是
以下关于法和和谐社会的关系,说法正确的是:
在一起故意杀人案件的侦查过程中,公安机关决定组织证人进行辨认,以确定犯罪嫌疑人。那么被辨认的人数不得少于几人?()
定金与预付款、押金的主要区别是()。
政府质量监督机构在工程开工前的质量检查工作有()。
近代思想家龚自珍说过:“自古及今,法无不改,势无不积,事例无不变迁,风气无不移易。”这说明()。
2013年10月发布的《国家卫星导航产业中长期发展规划》显示,到2020年,我国卫星导航系统产值将超过()亿元,将建成由()余颗卫星及地面运行控制系统组成的全球卫星导航系统,具备为全球用户提供导航定位服务的能力。
小石城事件
最新回复
(
0
)