首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1 +3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1 +3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2017-10-12
88
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
—α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、
B、
C、
D、
答案
B
解析
由α
1
+2α
2
—α
3
=β知
即γ
1
=(1,2,—1,0)
T
是Ax=p的解。同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
均是Ax=β的解,则
η
1
=γ
1
—γ
2
=(0,1,—2,—1)
T
,
η
2
=γ
3
—γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关。于是Ax=0至少有两个线性无关的解向量,则n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,故r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2。所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系。所以应选B。
转载请注明原文地址:https://kaotiyun.com/show/fMH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
设生产函数为Q=ALαKβ,其巾Q是产出量,L是劳动投入量,K是资本投入量,而A、α、β均为大于零的参数,则Q=1时K关于L的弹性为________.
证明推广的积分中值定理:设F(x)与G(x)都是区间[a,b]上的连续函数,且G(x)≥0,G(x)≠0,则至少存在一点ξ∈[a,b]使得
下列曲线中有渐近线的是
当x>0时,曲线y=xsin1/x().
差分方程的通解为______.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12一y22一y32,又A*α=α,其中α=(1,1,一1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
微分方程2x3y’=y(2x2一y2)的通解为___________.
设δ>0,f(x)在(一δ,δ)有连续的三阶导数,f’(0)=f"(0)=0且,则下列结论正确的是
若f(x,y)为关于x的奇函数,且积分区域D关于y轴对称,则当f(x,y)在D上连续时,必有=________.
随机试题
①一个星期后,李某拿到“家庭农场”的营业执照。②党的十八大后,国家出台政策,鼓励农民办家庭农场。③李某向有关单位提出办“家庭农场”的申请。④李某成了合法的农场主。⑤村民李某听说有政策支持,开始筹款,准备租地。下列对上述5个事件排序最合理的是()。
癫证症状标准中包括的症状有
A血和尿淀粉酶活性升高伴脂肪酶活性升高B血清S型淀粉酶升高而P型淀粉酶正常,脂肪酶活性不升高C血清S型淀粉酶和P型淀粉酶可同时升高,也可为2型中任何一型升高D血清淀粉酶活性升高伴尿淀粉酶活性降低E血清淀粉酶
A.降逆止呃,益气清热B.温中益气,降逆止呃C.疏肝泄热,活血止痛D.化痰散饮,和胃降逆E.行气散结,降逆化痰
患者男,32岁,咳嗽1月余,伴低热、痰中带血10天,胸片示:右肺上叶尖段炎症,伴有空洞形成。最可能的诊断是
《巴塞尔新资本协议》只对()的定义作了一个尝试性的规定:“包括但不限于因监管措施和解决民商事争议而支付的罚款、罚金或者惩罚性赔偿所导致的风险敞口。”
在进行两个投资方案比较时,投资者完全可以接受的方案是()。
“理解”这一层次水平属于的台阶目标是__________;“模拟应用"这一层次水平属于的台阶目标是__________;“巩固转化”这一层次水平属于的台阶目标是__________。
设函数y=f(x)由方程e2x+y-cos(xy)=e-1所确定,则曲线y=f(x)在点(0,1)处的法线方程为____________.
ThenoisethataffectsseacreaturesconiesfromthefollowingEXCEPT
最新回复
(
0
)