首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3. (I)证明:α,Aα,A2α线性无关; (II)设P=(α,Aα,A2α),求P-1AP.
已知A是3阶矩阵,αi(i=1,2,3)是3维非零列向量,若Aαi=iαi(i=1,2,3),令α=α1+α2+α3. (I)证明:α,Aα,A2α线性无关; (II)设P=(α,Aα,A2α),求P-1AP.
admin
2020-07-02
113
问题
已知A是3阶矩阵,α
i
(i=1,2,3)是3维非零列向量,若Aα
i
=iα
i
(i=1,2,3),令α=α
1
+α
2
+α
3
.
(I)证明:α,Aα,A
2
α线性无关;
(II)设P=(α,Aα,A
2
α),求P
-1
AP.
选项
答案
(Ⅰ)由Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=3α
3
,且α
1
,α
2
,α
3
非零可知,α
1
,α
2
,α
3
是A的不同特征值的特征向量,故α
1
,α
2
,α
3
线性无关. 又Aα=α
1
+2α
2
+3α
3
,A
2
α=α
1
+4α
2
+9α
3
,若k
1
α+k
2
Aα+k
3
A
2
α=0,即 k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
)=0, 则 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0. 由α
1
,α
2
,α
3
线性无关,得齐次线性方程组 [*] 因为系数行列式为范德蒙行列式且其值不为0,所以必有k
1
=k
2
=k
3
=0,即α,Aα,A
2
α线性无关. (Ⅱ)因为A
3
α=α
1
+8α
2
+27α
3
=6α—11Aα+6A
2
α,所以 AP=A(α,Aα,A
2
α)=(Aα,A
2
α,6α—11Aα+6A
2
α)=[*] 故[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fUx4777K
0
考研数学三
相关试题推荐
设A是4×3矩阵,且r(A)=2,B=,则r(AB)=_______.
设φ(x)=又f(x)可导,求F(x)=f[φ(x)]的导数.
设某网络服务器首次失效时间服从E(λ),现随机购得4台,求下列事件的概率:(Ⅰ)事件A:至少有一台的寿命(首次失效时间)等于此类服务器期望寿命;(Ⅱ)事件B:有且仅有一台寿命小于此类服务器期望寿命.
设u=f(x.y,z)有连续的偏导数,y=y(x),z=z(x)分别由方程exy—y=0与ez一xz=0确定,求
已知总体X服从正态分布N(μ,σ2),X1,X2,…,X2n是取自总体X容量为2n的简单随机样本,当σ2未知时,为σ2无偏估计,则C=______,D(Y)=_____.
邑知α=的一个特征向量,则a=__________.
曲线y=(x2+x)/(x2-1)渐近线的条数为________.
已知方程组有无穷多解,那么a=_______
(2001年)设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:exy—xy=2.
(14年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)g(χ)dχ.
随机试题
下列有关行政拘留的说法,错误的是()。
比较两种疾病发病率近年来下降的速度时,应选用比较两个医院某年的住院病人数,应选用
下列几种期前收缩的表现形式中,描述正确的是
根据《宪法》和法律的规定,关于民族区域自治制度,下列哪些选项是正确的?(2014年卷一第63题)
需求定理是指()。
下列项目中,属于进口完税价格组成部分的是()。
根据《合伙企业法》规定,下列选项中可以成为普通合伙人的有()。
随着汽车电动化的不断发展,国内造车新势力____________,传统车企亦纷纷转战新能源,新能源汽车领域热点不断。但转型时期谈全面推行纯电动汽车略显____________,具有综合性强、用户接受度高等优势的混合动力汽车作为过渡性产品__________
早期佛教的创立者是()
我们通常用下列哪种方法来研究选择性注意?()
最新回复
(
0
)