首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且E(X)=2D(X),试求: (Ⅰ)常数A,B之值; (Ⅱ)B(X2+eX); (Ⅲ)Y=|(X-1)|的分布函数F(y).
已知随机变量X的概率密度为f(χ)=Aeχ(B-χ)(-∞<χ<+∞),且E(X)=2D(X),试求: (Ⅰ)常数A,B之值; (Ⅱ)B(X2+eX); (Ⅲ)Y=|(X-1)|的分布函数F(y).
admin
2019-07-19
56
问题
已知随机变量X的概率密度为f(χ)=Ae
χ(B-χ)
(-∞<χ<+∞),且E(X)=2D(X),试求:
(Ⅰ)常数A,B之值;
(Ⅱ)B(X
2
+e
X
);
(Ⅲ)Y=|
(X-1)|的分布函数F(y).
选项
答案
(Ⅰ)由X~N([*])且B(X)=2D(X),得到E(X)=[*]=2D(X)=1,即B=2. 而[*],就有Ae=[*], 于是A=[*],从而f(χ)=[*] (Ⅱ)E(X
2
+e
X
)=E(X
2
)+E(e
X
).而 E(X
2
)=D(X)+[E(X)]
2
=[*], [*] 所以E(X
2
+e
X
)=[*] (Ⅲ)由于X~N(1,[*]),故(X-1)~N(0,[*]),[*](X-1)~N(0,1). 显然,当y<0时,F(y)=0;当y≥0时, F(y)=P{Y≤y}=P{[*](X-1)|≤y}=P{-y≤[*](X-1)≤y} =[*]=2Ф(y)-1, 故F(y)=[*] 其中Ф(y)为标准正态分布的分布函数.
解析
转载请注明原文地址:https://kaotiyun.com/show/fVc4777K
0
考研数学一
相关试题推荐
求I==1(0≤y≤b)及y=0围成.
设方阵A1与B1合同,A2与B2合同,证明:合同.
设有任意两个n维向量组α1,α2,...,αm和β1,β2,...,βm,若存在两组不全为零的数λ1,λ2,...,λm,k1,k2,...,km,使(λ1+k1)α+λ2+k2)α2+...+(λm+km)αm+=(λ1-k1)β1+(λ2-k2)β2
设随机变量X服从正态分布N(μ1,σ12),Y服从正态分布N(μ2,σ22),且P{|X-μ1<1}>P{|Y-μ2|<1)则必有()
设随机变量X的分布函数为F(x)=A+Barctanx,-∞<x<+∞.求:系数A与B;
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设f(x)在[0,+∞)上连续,且f(0)>0,设f(x)在[0,x]上的平均值等于f(0)与f(x)的几何平均数,求f(x).
设A与B均为正交矩阵,并且|A|+|B|=0.证明:A+B不可逆.
设X1,X2,…,Xn是来自总体X的简单随机样本,已知总体X服从参数为λ(λ>0)的指数分布.(Ⅰ)试求总体X的数学期望E(X)的矩估计量和最大似然估计量;(Ⅱ)检验所得估计是否为无偏估计.
随机试题
鸡出现特征性的“劈叉”姿势是马立克病()的表现。
患者,女性,30岁。因外出春游去植物园,出现咳嗽、咳痰伴喘息1天入院。体检:体温36.5℃,脉搏90次/分钟,呼吸28次/分,血压110/80mmHg,喘息貌,口唇发绀,在肺部可闻及广泛哮鸣音。该患者发病最可能的诱因是
从加工区运往区外的废料和旧机电产品,检验检疫机构按有关规定不需实施环保项目检验。( )
银监会《商业银行不良资产监测和考核暂行办法》规定的不良贷款分析报告包括()。
甲公司记账本位币为人民币,其一境外子公司记账本位币为美元,期初汇率为1美元=6.10元人民币,期末汇率为1美元=6.20元人民币,假定该子公司利润表采用中间汇率折算,资产负债表中盈余公积期初数为50万美元,折合人民币310万元,本期提取盈余公积70万美元,
根据《旅游法》规定,城镇和乡村居民利用自有住宅或其他条件依法从事旅游经营,其管理办法由()制定。
我国的国内1日游游客对于离开常住地到其他地区旅行的距离和出游时间方面有以下规定()。
下列选项中属于课堂提问的基本要求的有()。
A.条件(1)充分,但条件(2)不充分。B.条件(2)充分,但条件(1)不充分。C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分。D.条件(1)充分,条件(2)也充分。E.条件(1)和(2)单独都不充分,条件(1)和条件(2
(Findanswers)(to)thesequestion(is)something(like)adetectivestory.
最新回复
(
0
)