首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则k1η1+…+ksηs为方程组AX=b的解的充分必要条件是________.
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则k1η1+…+ksηs为方程组AX=b的解的充分必要条件是________.
admin
2021-11-15
34
问题
设η
1
,…,η
s
是非齐次线性方程组AX=b的一组解,则k
1
η
1
+…+k
s
η
s
为方程组AX=b的解的充分必要条件是________.
选项
答案
1
解析
显然k
1
η
1
+k
2
η
2
+…+k
s
η
s
为方程组AX-b的解的充分必要条件是A(k
1
η
1
+k
2
η
2
+…+k
s
η
s
)=b,因为Aη
1
=Aη
2
=…=Aη
s
=b,所以(k
1
+k
2
+…+k
s
)b=b,注意到b≠0,所以k
1
+k
2
+…+k
s
=1,即k
1
η
1
+k
2
η
2
+…+k
s
η
s
)为方程组AX=b的解的充分必要条件是k
1
+k
2
+…+k
s
=1.
转载请注明原文地址:https://kaotiyun.com/show/fYy4777K
0
考研数学二
相关试题推荐
设A是m×s阶矩阵,B为s×n阶矩阵,且r(B)=r(AB).证明:方程组BX=0与ABX=0是同解方程组。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.(I)与(II)是否有公共的非零解?若有公共解求出其公共解。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(I)的基础解系。
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设齐次线性方程组其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时,求出其通解。
设A为m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()。
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是()。
设φ1(x),φ2(x)为一阶非齐次线性微分方程y’+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
随机试题
德育过程的基本矛盾是()
介于直线一职能制和事业部制之间的结构形式是()
酒精阳性奶的可能病因错误的是
患儿,女,7岁。主诉全口牙龈增生2年余,一侧已经妨碍咀嚼。诊断为遗传性牙龈纤维瘤病,患者不会出现下列哪一体征()
任何单位或者个人都不得非法干预保险人履行赔偿或者给付保险金的义务,也不得限制被保险人或者受益人取得保险金的权利。( )
下列哪一行为不构成侵犯注册商标专用权?()
阅读下列材料,回答问题。材料一中国经济面临的问题,可以罗列出很多,天量货币、政府和企业的边界、反腐败、资产泡沫……作为国际投资大师、“商品之王”的吉姆.罗杰斯的关注点,却投射在我们惯常的思维之外,他说:“对于中国,我担忧的是水的问题。你们的水问题
下牙槽神经阻滞麻醉是将麻药注射到()。
设有课程表(课程号,课程名,学分,先修课程号),已知某应用程序需要列出"数据库原理"课程的一门先修课程,查询结果要求输出(课程名,学分,先修课名称,先修课学分),可以用____________连接操作在一个查询中实现此功能。
下列叙述中正确的是()。
最新回复
(
0
)