首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意分片光滑的有向闭合曲面片S,均有 (y+1)f′(χ)dydz+(y-y2)f(χ)dzdχ+[zyf′(χ)-2zeχ]dχdy=0, 其中f(χ)在(-∞,+∞)内具有连续的二阶导数,求f(χ)。
设对任意分片光滑的有向闭合曲面片S,均有 (y+1)f′(χ)dydz+(y-y2)f(χ)dzdχ+[zyf′(χ)-2zeχ]dχdy=0, 其中f(χ)在(-∞,+∞)内具有连续的二阶导数,求f(χ)。
admin
2017-11-30
35
问题
设对任意分片光滑的有向闭合曲面片S,均有
(y+1)f′(χ)dydz+(y-y
2
)f(χ)dzdχ+[zyf′(χ)-2ze
χ
]dχdy=0,
其中f(χ)在(-∞,+∞)内具有连续的二阶导数,求f(χ)。
选项
答案
令p(χ,y)=(y+1)f′(χ),Q(χ,y)=(y-y
2
)f(χ),R(χ,y)=zyf′(χ)-2ze
χ
, 由于f(χ)在(-∞,+∞)内具有连续的二阶导数,故p(χ,y),Q(χ,y),R(χ,y)均具有一阶连续偏导,故由高斯公式可知, [*](y+1)f′(χ)dydz+(y-y
2
)f(χ)dzdχ+[zyf′(χ)-2ze
χ
]dχdy =±[*][(y+1)f〞(χ)+(1-2y)f(χ)+yf′(χ)-2e
χ
]dχdydz=0。 其中,Ω是由闭合曲面S所围成的区域,由区域Ω的任意性可知, (y+1)f〞(χ)+(1-2y)f(χ)+yf′(χ)-2e
χ
=0, 即y[f〞(χ)+f′(χ)-2f(χ)]+[f〞(χ)+f(χ)-2e
χ
]=0, 则有f〞(χ)+f′(χ)-2f(χ)=0 (1) f〞(χ)+f(χ)-2e
χ
=0 (2) 求解微分方程(1),得f(χ)=C
1
e
χ
+C
2
e
-2χ
,则该通解同样满足微分方程(2),代入可得C
1
=1,C
2
=0,故f(χ)=e
χ
。
解析
转载请注明原文地址:https://kaotiyun.com/show/ffr4777K
0
考研数学一
相关试题推荐
求
设求f(x)dx.
设f(x)在[0,+∞)上连续,非负,且以T为周期,证明:在(a,b)内至少存在一点ξ,使
若f(x)在a,b]上二阶可微,且f’’(x)>0,则f(x)为[a,b]上的凹函数;
设A为n阶非奇异矩阵,a是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA-1α≠b.
设随机变量X服从参数为1的指数分布,则随机变量y=min(X,2)的分布函数().
方程组的通解是__________.
设L为椭圆,其周长为π,则(2xy+3x2+5y2)ds=________。
设f(u,υ)具有连续偏导数,且f’u(u,υ)+f’u(u,υ)=sin(u+υ)eu+υ,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
)设β、β均为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩r(A)≤2;(II)若α,β线性相关,则秩r(A)<2.
随机试题
高效液相色谱法测定糕点、糖果中的合成着色,样品溶液用柠檬酸溶液调节pH至(),在这样的酸性条件下,色素容易被聚酰胺完全吸附。
下列选项中错误的说法是()
具有抗疟作用的成分是
属于十九畏的配伍药对是
银杏总黄酮主要作用是
f(x)在点x0处的左、右极限存在且相等是f(x)在点x0处连续的()。
下列费用中属于设备运杂费的有()。
()的检查内容包括“固定资产原价”、“累计折旧”、“固定资产减值准备”、“固定资产净值”、“固定资产清理”、“在建工程”和“待处理财产损益”等相关项目的检查。
下列关于需求的变动的说法中正确的是()
关于const修饰符的说法中,错误的是
最新回复
(
0
)