首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶方阵,A’为其伴随矩阵,且 讨论线性方程组Ax=0的基础解系由多少个线性无关解向量构成?并给出该方程组的通解.
设A为3阶方阵,A’为其伴随矩阵,且 讨论线性方程组Ax=0的基础解系由多少个线性无关解向量构成?并给出该方程组的通解.
admin
2021-07-27
55
问题
设A为3阶方阵,A’为其伴随矩阵,且
讨论线性方程组Ax=0的基础解系由多少个线性无关解向量构成?并给出该方程组的通解.
选项
答案
r(A)=2.线性方程组Ax=0的基础解系由3-2=1个线性无关的解向量构成.又由AA
*
=|A|E=0知,A
*
的列向量组均为方程组Ax=0的解向量,因此,取非零列向量ξ=[1,-1,3]
T
,即可构成Ax=0的一个基础解系,通解为cξ=c[1,-1,3]
T
,其中c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/fhy4777K
0
考研数学二
相关试题推荐
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则().
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x为
设f(x)可导,证明:f(x)的两个零点之间一定有f(x)+f’(x)的零点.
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设A为m×n矩阵,B为n×m矩阵,且m>n,则必有()
设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是()
设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
随机试题
恩格斯在谈到巴尔扎克的《人间喜剧》时说,“从这里所学到的东西,比从当时所有职业的历史学家、经济学家和统计学家那里学到的全部东西还要多”。这说明了艺术具有______功能。()
男性,55岁,2周前体检发现左肺上叶肿块,直径约3cm,边界较清楚。入院手术切除后病理诊断为结核瘤。肿块中央部分为
男性,32岁,既往有胃病史。近一周来常感上腹部不适,4小时前突发上腹部剧烈疼痛,伴有恶心、呕吐。查体:腹部压痛、肌紧张,肝浊音缩小。X线检查可见膈下游离气体。首先考虑
1998年试题【试题要求】1.任务描述图示木夹板门(图2.3—1)按指定的剖面线位置及剖视方向,绘出构造节点详图,包括与240mm砖墙及过梁的关系,要求构造合理。2.设计任务与构造要求(1)图示木夹板门,中悬亮窗,下部有百叶,双面胶合板门。(
宋代东京汴梁城的特点是()。
根据第五次全国人口普查的结果,我国男性占总人口的51.63%,女性占总人口的48.37%,那么人口的性别比为( )。
资料(一)威达电子电工股份有限公司是2005年在深交所上市的公司,主要从事磁性材料、半导体材料、电动机、电热设备工业自动化装置、电子电工产品制造设备的研发、生产和销售,母公司为科威股份有限公司(以下简称科威公司)。威达股份于2014年1
约公元前2070年,()建立了我国第一个奴隶制王朝夏朝。
下列情形构成挪用公款罪的是()。
Arapidmeansoflong-distancetransportationbecameanecessityfortheUnitedStatesassettlementspreadfartherwestward.F
最新回复
(
0
)