首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得 ∫0af(x)dx=af(0)+f’(ξ)。
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得 ∫0af(x)dx=af(0)+f’(ξ)。
admin
2019-08-12
105
问题
设f(x)在[0,a]上有一阶连续导数,证明至少存在一点ξ∈[0,a],使得
∫
0
a
f(x)dx=af(0)+
f
’
(ξ)。
选项
答案
由已知 ∫
0
a
f(x)dx=∫
0
a
f(x)d(x-a) =[(x一a)f(x)]|
0
a
一∫
0
a
(x一a)f
’
(x)dx =af(0)一∫
0
a
(x一a)f
’
(x)dx。 因为f
’
(x)连续,所以f
’
(x)在[0,a]上存在最小值m和最大值M,则 m(a一x)≤(a一x)f
’
(x)≤M(a一x), 故[*]≤∫
0
a
(a一x)f
’
(x)dx≤[*],再由介值定理可知,至少存在一点ξ∈[0,a],使得 ∫
0
a
(a-x)f
’
(x)dx=[*]f
’
(x),于是∫
0
a
f(x)dx=af(0)+[*]f
’
(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/c5N4777K
0
考研数学二
相关试题推荐
(04年)设e<a<b<e2,证明ln2b—ln2a>
(02年)设0<a<b,证明不等式
(18年)已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.(1)求f(x);(2)若f(x)在区间[0,1]上的平均值为1.求a的值.
(11年)设函数f(x),g(x)均有二阶连续导数,满足f(0)>0,g(0)<0,且f’(0)=g’(0)=0,则函数z=f(x)g(y)在点(0,0)处取得极小值的一个充分条件是
(2011年)设A为3阶矩阵,将A的第2列加到第1列得矩阵B,再交换B的第2行与第3行得单位矩阵.记P1=,则A=
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαm线性无关|P|≠0.
设B是元素全为1的行阶方阵(n≥2),证明:(E-B)-1=E-
(15)设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换x=Qy下的标准形为
设f(x,y)=f(x,y)在点(0,0)处是否可微?
在中,无穷大量是
随机试题
如果企业闲置设备很多,管理效率低下,则表明固定资产周转率
在流行病学研究中,选入到研究中的研究对象与没有被选入者特征上的差异所造成的系统误差是
关于Shift阿尔辛蓝地衣红染色法的叙述,错误的是
半数以上股份被另一公司持有并受其控制的公司为()。
1998年3月1日,甲将自己的一套住房出租给乙,双方签订房屋租赁合同并约定租期22年。2017年3月1日,甲又将该房屋抵押给丙,并办理了抵押登记。2018年3月1日,丙行使抵押权拍卖该房屋,丁以100万元的价格购得该套房屋并办理了过户手续。现在,丁要求乙搬
本票可以是远期的,远期本票像远期汇票一样也存在承兑行为。()
根据凯恩斯的流动性偏好理论,决定货币需求的动机包括()。Ⅰ.交易动机Ⅱ.预防动机Ⅲ.储蓄动机Ⅳ.投机动机
行为锚定等级评价是一种()。这种绩效考核最大的缺点在于()。
--Doyouknowwhoinvented______telephone?--No,Butitisreally______telephone?
Whatdoesyourdoctorusuallyadviseyoutodowhenyou’requitesick?To______.Whatwillkeepasickmanworkingwhenhesh
最新回复
(
0
)