首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2021-02-25
61
问题
设矩阵
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
矩阵A的特征多项式为 [*] 若λ=2是特征方程的二重根,则有2
2
-16+18+3a=0,解得a=-2. 当a=-2时,A的特征值为2,2,6,矩阵 [*] 的秩为1,故λ=2对应的线性无关的特征向量有两个,从而A可相似对角化. 若λ=2不是特征方程的二重根,则λ
2
-8λ+18+3a为完全平方数,从而18+3a=16,解得a=-2/3. 当a=-2/3时,A的特征值为2,4,4,矩阵 [*] 的秩为2,故λ=4对应的线性无关的特征向量只有一个,从而A不可相似对角化.
解析
本题主要考查矩阵特征值、特征向量的求法及矩阵相似于一个对角矩阵的充分必要条件.通过讨论矩阵特征方程二重根的情况以及对应的线性无关的特征向量的个数,从而决定矩阵A是否可以相似于对角矩阵.
转载请注明原文地址:https://kaotiyun.com/show/fp84777K
0
考研数学二
相关试题推荐
设区域D={(x,y)|x2+y2≤1,x≥0},计算二重积分
设y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个解,且=0.(Ⅰ)求y(χ),并求y=y(χ)到χ轴的最大距离.(Ⅱ)计算∫0+∞y(χ)dχ.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设函数S(x)=∫0x|cost|dt。(Ⅰ)当n为正整数,且nπ≤x<(n+1)π时,证明2n≤S(x)<2(n+1);(Ⅱ)求S(x)/x。
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
设f’(sin2x)=cos2x+tan2x,则f(x)=_________(0<x<1)
设x>0时,∫x2f(x)dx=arcsinx+c,F(x)是f(x)的原函数,满足F(1)=0,则F(x)=________________.
随机试题
Researchonfriendshiphasestablishedanumberoffacts,someinteresting,someevenuseful.Didyouknowthattheaveragestud
设y1(x),y2(x是二阶常系数线性微分方程yˊˊ+Pyˊ+qy=0的两个线性无关的解,则它的通解为________.
干姜的主治病证有
高血压危急症的处理原则最主要的是()
小儿,阵发性痉挛性咳嗽1个半月,经治疗咳嗽减轻,但痰粘难以咳出,伴低热,烦躁盗汗,舌红苔少,脉细数。治疗应首选方剂
狭义的金融犯罪是指金融业务活动本身的犯罪,主要是指“破坏金融管理秩序罪”及“金融诈骗罪”;广义的金融犯罪还包括金融机构工作人员的职务犯罪,如贪污、受贿、挪用公款罪等。()
初次见面握手时间应控制在3秒钟内,切记不可戴手套。()
国际足联总部位于()。
简述赫尔巴特的教学理论。【2012年-天津师大】【2015年-北师大】【2019年-苏州大学】
TheemploymentdiscriminationlawsuitagainstWal-Mart,whichtheSupremeCourtheardlastweek,isthelargestinAmericanhist
最新回复
(
0
)