首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
((13年)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设汁要求.当以3 m3/min的速率向容器内注入液体时,液面的面积将以πm3/mjn的速率均匀扩大(假设注入液体前,容器内无液
((13年)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设汁要求.当以3 m3/min的速率向容器内注入液体时,液面的面积将以πm3/mjn的速率均匀扩大(假设注入液体前,容器内无液
admin
2021-01-19
85
问题
((13年)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2 m.根据设汁要求.当以3 m
3
/min的速率向容器内注入液体时,液面的面积将以πm
3
/mjn的速率均匀扩大(假设注入液体前,容器内无液体)
(1)根据t时刻液面的面积.写出t与φ(y)之间的关系式:
(2)求曲线x=φ(y)的方程.
选项
答案
(1)设t时刻液面高度为y,则由题设知此时液面面积为 πφ
2
(y)=4π+πt 从而 t=φ
2
(y)一4 (2)液面高度为y时,液体的体积为 π∫
0
y
φ
2
(u)du=3t=3φ
2
(y)一12 上式两边对y求导得 πφ
2
(y)=6φ(y)φ’(y) 解此方程得 [*] 由φ(0)=2知C=2. 故所求曲线方程为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fv84777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)连续,在点x=0处可导,且f(0)=0,令(Ⅰ)试求A的值,使F(x)在(-∞,+∞)上连续;(Ⅱ)求F’(x)并讨论其连续性.
验证函数f(x)=x3+x2在区间[-1,0]上满足罗尔定理.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
求下列积分。设f(x)=∫1xe-y2dy,求∫01x2f(x)dx;
计算二重积分(x2+4x+y2)dxdy,其中D是曲线(x2+y2)2=a2(x2-y2)围成的区域.
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
已知微分方程y’’+by’+y=0的每个解都在区间(0,+∞)上有界,则实数b的取值范围是()
(1998年)设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=【】
随机试题
血病之阴虚火旺者治疗宜选用血病之寒凝经脉证治疗宜选用
患儿,男,4岁。以病毒性脑膜炎入院,经积极治疗,除右侧肢体仍活动不利,其他临床症状明显好转,家长要求回家休养。护士为其进行出院指导,不妥的是
在综合布线工程测试中,()近端串音衰减值/衰减值,表示串音衰减比。
当某工程网络计划的计算工期等于计划工期时,该网络计划中的关键工作是指( )的工作。
财务会计报告由()组成。
下列各项中,()是支付结算的法律依据。
2019年5月,陈某从某汽车销售公司(增值税一般纳税人)购买轿车一辆供自己使用,支付含增值税价款230000元,另支付购置工具件和零配件含税价款1300元,车辆装饰费6000元,支付的所有款项均由销售公司开具统一发票。则陈某应纳车辆购置税()元。
上市商业银行信息披露应与银行的经营特点相适应,其原则不包括()。
小强2岁时由于父母忙于工作被送到乡下外婆家抚养,外公外婆对其十分疼爱,百般呵护。6岁时,小强回到父母身边并进入小学。这时他性格十分内向,爱哭,害怕与陌生人交往。按照埃里克森的理论,小强心理问题形成的原因是没有完成()的矛盾冲突。
以下程序用来统计文件中字符的个数(函数feof用以检查文件是否结束,结束时返回非零)#include<stdio.h>main(){FILE*fp;longnum=0;fp=fopen("fname.dat","r");while(__
最新回复
(
0
)