首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,二)已知函数y=y(x)在任意点x处的增量其中α是比△x(△x→0)高阶的无穷小,且y(0)=π,则y(1)=( ).
(1998年试题,二)已知函数y=y(x)在任意点x处的增量其中α是比△x(△x→0)高阶的无穷小,且y(0)=π,则y(1)=( ).
admin
2021-01-19
68
问题
(1998年试题,二)已知函数y=y(x)在任意点x处的增量
其中α是比△x(△x→0)高阶的无穷小,且y(0)=π,则y(1)=( ).
选项
A、
B、2π
C、π
D、
答案
A
解析
由题设
,且a是比△x(△x→0)高阶的无穷小,从而
即
此为可分离变量的微分方程,则
,两边积分得In|y|=arctanx+C由已知y(0)=π,代入上式解得C=lnπ,于是y=πe
arctanx
,因此
选A.
[评注]根据导数定义,由
知
由本题知,由微分与导数的定义可构造微分方程,从而可将微分或导数的定义与微分方程结合起来构造综合题型.
转载请注明原文地址:https://kaotiyun.com/show/eS84777K
0
考研数学二
相关试题推荐
已知4阶矩阵A相似于B,A的特征值为2,3,4,5,E为4阶单位矩阵,则|B—E|=_______.
设a,b,a+b均非0,行列式等于____________.
若向量组α1=(1,一1,2,4)T,α2=(0,3,1,2)T,α4=(3,0,7,a)T,α4=(1,一2,2,0)T线性无关,则未知数a的取值范围是__________.
设曲线y=ax2(a≥0,常数a>0)与曲线y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形D.求D绕x轴旋转一周所成的旋转体的体积V(a);
设矩阵A、B的行数都是m.证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(AB).
已知凹曲线y=f(x)在曲线上任意一点(x,f(x))处的曲率为K=,且f(0)=0,f’(0)=0,则f(x)=_________。
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
设,证明数列{xn}的极限存在,并求此极值。
设f(x)有一阶连续导数,f(0)=0,当x→0时,∫0f(x)f(t)dt与x2为等价无穷小,则f’(0)等于
[2001年]设函数y=f(x)由方程e2x+y一cos(xy)=e一1所确定,则曲线y=f(x)在点(0,1)处的法线方程为_________.
随机试题
世の中、タダほど高いものはない、と言う。テレビのバラエティー番組には社会的使命みたいなものがない(面白ければそれでいい)から、スポンサーが番組に口を出してもだれも文句を言わない。それで番組がもっと面白くなれば、視聴者だって喜ぶだろう。しかし新聞に
关于乳腺的描述,错误的是
男,12岁。10天前出现上唇部红肿,可见脓头,自行挤压排脓液,后出现发热,畏寒,体温最高达38.9℃,寒战,头痛剧烈,神志不清。其最可能的并发症是()
患者,女,50岁。右肩疼痛并活动障碍1周,诊为右肩周炎,既往有胃溃疡病史,经常感上腹部不适。该患者可以使用药物的是
以下各项不属于自动稳定的财政政策的表现的是()。
甲股份有限公司委托A证券公司发行普通股1000万股,每股面值1元,每股发行价格为4元。根据约定,股票发行成功后,甲股份有限公司应按发行收入的2%向A证券公司支付发行费。如果不考虑其他因素,股票发行成功后,甲股份有限公司记入“资本公积”科目的金额为(
社区工作者一般会通过组织一系列社区活动,如夏季文艺演出、老人书画比赛、青少年兴趣小组等,让居民在这些活动中相互熟悉、交往、沟通,这种行为属于社区工作地区发展模式中的()策略。
拥有健康的身体是从事任何学习和工作的基本前提,确保他们的身体健康尤为重要。因此,能够促进小学生身体健康的学校体育属于基础性课程。
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=________
TessoftheD’UrbervillesandJudetheObscurearetworepresentativenovelswrittenby__________.
最新回复
(
0
)