首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
admin
2018-06-27
56
问题
A是2阶矩阵,2维列向量α
1
,α
2
线性无关,Aα
1
=α
1
+α
2
,Aα
2
=4α
1
+α
2
.求A的特征值和|A|.
选项
答案
方法一先找A的特征向量.由于α
1
,α
2
线性无关,每个2维向量都可以用它们线性表示.于是A的特征向量应是α
1
,α
2
的非零线性组合c
1
α
1
+c
2
α
2
,由于从条件看出α
1
不是特征向量,c
2
不能为0,不妨将其定为1,即设η=cα
1
+α
2
是A的特征向量,特征值为λ,则Aη=λη, Aη=A(cα
1
+α
2
)=c(α
1
+α
2
)+4α
1
+α
2
=(c+4)α
1
+(c+1)α
2
, 则 (c+4)α
1
+(c+1)α
2
=λ(cα
1
+α), 得c+4=λc,c+1=λ.解得c=2或-2,对应的特征值λ分别为3,-1.|A|=-3. 方法二A(α
1
,α)=(α
1
+α
2
,4α
1
+α
2
),用矩阵分解法,得 (α
1
+α
2
,4α
1
+α
2
)=(α
1
,α
2
)[*] 记B=[*],则A(α
1
,α
2
)=(α
1
,α
2
)B. 由于α
1
,α
2
线性无关,(α
1
,α
2
)是可逆矩阵,于是A相似于B. A和B的特征值一样. |λE-B|=[*]=(λ+1)(λ-3). 得A的特征值为-1,3.|A|=-3.
解析
转载请注明原文地址:https://kaotiyun.com/show/g4k4777K
0
考研数学二
相关试题推荐
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知A是3阶矩阵,α1,α2,α3是3维线性无关列向量,且Aα1=3α1+3α2—2α3,Aα2=一α2,Aα3=8α1+6α2—5α2.求A的特征值和特征向量;
已知y1*(x)=xe-x+e-2x,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+Py’+qy=f(x)的三个特解.求这个方程和它的通解:
求
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3Aα一2A2α.证明:矩阵B=(α,Aα,A4α)可逆;
求凹曲线y=y(x),使得曲线上任一点处的曲率其中α为该曲线在相应点处的切线的倾角,且cosα>0,此外曲线在点(1,1)处的切线为水平直线.
证明n阶矩阵相似.
已知n维向量组α1,α2,α3,α4是线性方程组Ax=0的基础解系,则向量组aα1+bα4,aα2+bα3,aα3+bα2,aα4+bα1也是Ax=0的基础解系的充分必要条件是()
设其中f,g,φ在其定义域内均可微,求.
设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要作多少功?(假设在球从水中取出的过程中水面的高度不变.)
随机试题
A.右下腹痛伴腹腔内出血B.转移性右下腹痛伴板状腹C.触痛性腹部包块D.右下腹痛向会阴部放射E.右下腹压痛,其部位可随体位改变急性肠系膜淋巴结炎可表现为
评价经干预后健康状况和社会效益及经济效益的变化是
A.目睛黄染B.皮肤发黄C.胁肋疼痛D.腹内积块E.腹大胀满
A.竞争性抑制B.非竞争性抑制C.反竞争性抑制D.不可逆性抑制E.以上均正确丙二酸对琥珀酸脱氢酶的抑制属于
(2005)大型旅馆和图书馆显示出复杂综合的空间组合,其根本原因在于()。
根据《建设工程工程量清单计价规范》(GB50500-2008),现浇混凝土工程量计算正确的有()。
简述奥苏贝尔的有意义接受学习理论。
甲犯故意伤害罪被判处有期徒刑10年,执行7年后被假释,在假释考验满1年时,甲又犯诬告陷害罪(应判处有期徒刑5年)。撤销假释后,对甲量刑的幅度是()。
目前在小型和微型计算机里最普遍采用的字母与字符编码是______。
考生文件夹下存在一个文件“PY201.py”,请写代码替换横线,不修改其他代码,实现以下功能。使用turtle库的turtle.fd()函数和turtle.left()函数绘制—个边长为200像素黄底红边的太阳花,效果如下所示。试题程序:#请在程序
最新回复
(
0
)