首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
admin
2018-06-27
44
问题
A是2阶矩阵,2维列向量α
1
,α
2
线性无关,Aα
1
=α
1
+α
2
,Aα
2
=4α
1
+α
2
.求A的特征值和|A|.
选项
答案
方法一先找A的特征向量.由于α
1
,α
2
线性无关,每个2维向量都可以用它们线性表示.于是A的特征向量应是α
1
,α
2
的非零线性组合c
1
α
1
+c
2
α
2
,由于从条件看出α
1
不是特征向量,c
2
不能为0,不妨将其定为1,即设η=cα
1
+α
2
是A的特征向量,特征值为λ,则Aη=λη, Aη=A(cα
1
+α
2
)=c(α
1
+α
2
)+4α
1
+α
2
=(c+4)α
1
+(c+1)α
2
, 则 (c+4)α
1
+(c+1)α
2
=λ(cα
1
+α), 得c+4=λc,c+1=λ.解得c=2或-2,对应的特征值λ分别为3,-1.|A|=-3. 方法二A(α
1
,α)=(α
1
+α
2
,4α
1
+α
2
),用矩阵分解法,得 (α
1
+α
2
,4α
1
+α
2
)=(α
1
,α
2
)[*] 记B=[*],则A(α
1
,α
2
)=(α
1
,α
2
)B. 由于α
1
,α
2
线性无关,(α
1
,α
2
)是可逆矩阵,于是A相似于B. A和B的特征值一样. |λE-B|=[*]=(λ+1)(λ-3). 得A的特征值为-1,3.|A|=-3.
解析
转载请注明原文地址:https://kaotiyun.com/show/g4k4777K
0
考研数学二
相关试题推荐
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
设a1,a2,a3均为3维向量,则对任意常数k,ι,向量组a1+ka3,a2+ιa3。线性无关是向量组a1,a2,a3线性无关的
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
设积分区域D={(x,y)|0≤x≤y≤2π),计算二重积分
设极坐标系下的累次积分将I写成先对r后对θ的累次积分,则I=_________.
如图,正方形{(z,y)||x|≤1,|y|≤1}被其对角线划分为四个区域Dk(k=1,2,3,4),Ik==
二元函数f(x,y)在点(0,0)处可微的一个充分条件是
设f(x)在区间[a,b]上连续,且f(x)>0,则函数在(a,b)内的零点个数为()
设xn=又un=x1+x2+…+xn,证明当n→∞时,数列{un}收敛.
求功:(Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功?(Ⅱ)半径为R的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
随机试题
简要说明从众行为的影响因素。
呼吸衰竭进行氧疗时,应注意()。
某男,28岁,平素嗜食辛辣,一个月前因饮酒过度引起上腹部疼痛,多方治疗效果不佳。现病人胃脘隐隐灼痛,饥不欲食,嘈杂,口燥咽干,口渴欲饮,体瘦,大便偏干,舌红无苔而干,脉细。
某建筑场地饱和淤泥质黏土层厚15~20m,现决定采用排水固结法加固地基。下述不属于排水固结法的是( )。
关于大理石的特性,下列说法中,不正确的是()。
移情是体验他人情绪、情感能力,是个体觉察到他人的情绪反应时所产生的与他人相同的情绪体验。()
在1~50这50个自然数中,任取三个不同的数,其中能组成公比为正整数的等比数列的概率是:
固定资本和流动资本划分的主要依据是()
Whatcanbetherelationshipbetweenthemanandthewoman?
Latelysocialscientistshavebeguntoaskifcultureisfoundjustinhumans,orifsomeanimalshaveaculturetoo.Whenwesp
最新回复
(
0
)