“中心对称和中心对称图形”的教学目的主要有 ①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。 ②会根据关于中心对称图形,的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。 此外,通过复习图形轴

admin2018-05-10  37

问题 “中心对称和中心对称图形”的教学目的主要有
①知道中心对称的概念,能说出中心对称的定义和关于中心对称的两个图形的性质。
②会根据关于中心对称图形,的性质定理2的逆定理来判定两个图形关于一点对称;会画与已知图形关于一点成中心对称的图形。
此外,通过复习图形轴对称,并与中心对称比较,渗透类比的思想方法;用运动的观点观察和认识图形,渗透旋转变换的思想。
通过题干来完成下列教学设计。
根据教学目标设计教学环节;给出两个实例以进行知识探究。

选项

答案教学环节: 环节1:练一练:在图3中,已知△ABC和△EFG关于点O成中心对称,分别找出图中的对称点和对称线段。 [*] 说明与建议:教师可演示△ABC绕点O旋转180度后与△EFG重合的过程,让学生说出点E和点A,点B和点F,点C和点G是对称点;线段AB和EF、线段AC和EG,线段BC和FG都是对称线段。教师还可向学生指出,上图中,点A、O、E在一条直线上,点C、O、G在一条直线上,点B、O、F在一条直线上,且AO=EO,BO=FO,CO=GO。 问题:从上面的练习及分析中,可以看出关于中心对称的两个图形具有哪些性质? 说明与建议:引导学生总结出关于中心对称的两个图形的性质:定理1一关于中心对称的两个图形是全等形;定理2一关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 问题:定理2的题设和结论各是什么?试说出它的逆命题。 说明与建议:学生解答此题有困难,教师要及时引导。特别是叙述命题时,学生常常照搬“对称点”“对称中心”这些词语,教师应指出:由于没有“两个图形关于中心对称”的前提,所以不能使用“对称点”“对称中心”这样的词语,而要改为“对应如”“某一点”。最后,教师应完整地叙述这个逆命题——如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于点对称。 问题:怎样证明这个逆命题是正确的? 说明与建议:证明过程应在教师的引导下,师生共同完成。由已知条件——对应点的连线都经过某一点,并且被这一点平分,可以知道:若把其中一个图形绕着这点旋转180度,它必定与另一个图形重合,因此,根据定义可以判定这两个图形关于这一点对称。这个逆命题即为逆定理。根据这个逆定理,可以判定两个图形关于一点对称,也可以画出已知图形关于一点的对称图形。 环节2:练一练:画出图4中,线段PQ关于点O的对称线段P’Q’。 [*] (画法如下:(1)连结PO,延长PO到P’,使OP’=OP,点P,就是点P关于点O的对称点。(2)连结QO,延长QO到Q’,使Q’Q=OQ,点Q’就是点Q的对称点,则PQ’就是线段PQ关于O点的对称线段。教师应指出:画一个图形关于某点的中心对称图形,关键是画“对称点”。比如,画一个三角形关于某点的中心对称三角形,只要画出三角形三个顶点的对称点,就可以画出所要求的三角形。)

解析
转载请注明原文地址:https://kaotiyun.com/show/g8tv777K
0

相关试题推荐
最新回复(0)