首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求微分方程y〞-2y′-e2χ=0满足初始条件y(0)=1,y′(0)=1的特解.
求微分方程y〞-2y′-e2χ=0满足初始条件y(0)=1,y′(0)=1的特解.
admin
2019-08-23
47
问题
求微分方程y〞-2y′-e
2χ
=0满足初始条件y(0)=1,y′(0)=1的特解.
选项
答案
原方程化为y〞-2y′=e
2χ
. 特征方程为λ
2
-2λ=0,特征值为λ
1
=0,λ
2
=2, y〞-2y′=0的通解为y=C
1
+C
2
e
2χ
. 设方程y〞-2y′=e
2χ
的特解为y
0
=Aχe
2χ
,代入原方程得A=[*], 原方程的通解为y=C
1
+C
2
e
2χ
+[*]χe
2χ
. 由y(0)=1,y′(0)=1得[*]解得C
1
=[*],C
2
=[*], 故所求的特解为y=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/g9A4777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明:存在η∈(0,2),使f(η)=f(0);
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0。证明:在开区间(a,b)内至少存在一点ξ,使。
设A是3阶矩阵,λ1,λ2,λ3是A的3个不同的特征值,对应的特征向量分别是ξ1,ξ2,ξ3,令β=ξ1﹢ξ2﹢ξ3.证明:(I)B不是A的特征向量;(Ⅱ)向量组β,Aβ,A2β线性无关.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在cE(0,1),使得f(C)=1-2c;
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为,求A.
已知y1*(x)=xe—x+e—2x,y2*(x)=xe—x+xe—2x,y3*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y″+py′+qy=f(x)的三个特解.求这个方程和它的通解.
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是()
微分方程y"一7y’=(x一1)2的待定系数法确定的特解形式(系数的值不必求出)是_______.
设y(χ)是微分方程y〞+(χ-1)y′+χ2y=eχ满足初始条件y(0)=0,y′(0)=1的解,则().
微分方程满足初始条件y(1)=1的特解是y=_____________.
随机试题
转发上级机关和不相隶属机关的公文应当使用()
正常情况下不能通过肾小球滤过膜的物质是
新世纪新阶段人民军队的历史使命是什么?
淀粉样变性常见于
牙体缺损修复的抗力型是指
下列苏共领导人中因反对农业全盘集体化而遭到处分的是()。
如图所示,向放在水槽底部的口杯注水(流量一定),注满口杯后继续注水,直到注满水槽,水槽中水平面上升高度h与注水时间t之间的函数关系大致是()。
(2014年真题)《唐律疏议.杂律》:“诸买奴婢、马牛驼骡驴,已过价……立券之后,有旧病者三日内听悔,无病欺者市如法。”《疏议》曰:“若立券之后,有旧病,而买时不知,立券后始知者,三日内听悔。三日外无疾病,故相欺罔而欲悔者,市如法,违者笞四十;若
Whatisthewomantryingtodo?
Nowomancanbetoorichortoothin.ThissayingoftenattributedtothelateDuchessofWindsorembodiesmuchoftheoddspiri
最新回复
(
0
)