首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
利用代换将方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解。
利用代换将方程y"cosx-2y’sinx+3ycosx=ex化简,并求出原方程的通解。
admin
2019-01-26
69
问题
利用代换
将方程y"cosx-2y’sinx+3ycosx=e
x
化简,并求出原方程的通解。
选项
答案
方法一:由[*]得 y’=u’sec x+usec xtanx. y"=u"sec x+2u’sec xtan c+usec xtan
2
x+usec
3
x, 代入原方程y"cosx-2y’sin x+3ycosx=e
x
,得 u"+4u=e
x
。 (1) 先求其对应的齐次线性微分方程的通解。由于其特征方程为λ
2
+4=0,则特征方程的根为λ=+2i。所以通解为[*]=C
1
cos 2x+C
2
sin 2x,其中C
1
,C
2
为任意常数。 再求非齐次线性微分方程的特解。设其特解为u
*
(x)=Ae
x
,代入(1)式,得 (Ae
x
)"+4(Ae
x
)=Ae
x
+4Ae
x
=e
x
, 则[*]因此[*]所以(1)式的通解为 [*] 其中C
1
,C
2
为任意常数。 因此,原方程的通解为 [*] 方法二:由[*]得u=ycosx,于是 u’=y’cos x-ysin x, u"=y"cos x-2y’sin x-ycos x, 于是原方程y"cos x-2y’sin x+3ycos x=e
x
化为u"+4u=e
x
(以下求解过程同方法一)。
解析
转载请注明原文地址:https://kaotiyun.com/show/V5j4777K
0
考研数学二
相关试题推荐
(2008年)已知函数f(χ)连续,且=1,则f(0)=________.
(1989年)设两函数f(χ)和g(χ)都在χ=a处取得极大值,则函数F(χ)=f(χ)g(χ)在χ=a处【】
汽艇以27(km/h)的速度,在静止的海面上行驶,现在突然关闭其动力系统,它就在静止的海面上作直线滑行.设已知水对汽艇运动的阻力与汽艇运动的速度成正比,并已知在关闭其动力后20(s)汽艇的速度降为了10.8(km/h).试问它最多能滑行多远?
求极限:.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设A是n阶可逆阵,将A的第i行和第j行对换得到的矩阵记为B,证明:B可逆,并推导A一1和B一1的关系.
计算积分:∫03(|x—1|+|x一2|)dx.
计算不定积分.
求V(t)=[(t一1)y+1]dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,一≤y≤1},2≤t≤3。
设A是n阶实对称矩阵.证明:(1)存在实数c,使对一切χ∈Rn,有|χTAχ|≤cχTχ.(2)若A正定,则对任意正整数k,Ak也是对称正定矩阵.(3)必可找到一个数a,使A+aE为对称正定矩阵.
随机试题
牌号为GGR—1.00的硅质隔热耐火砖(YB/T386—1994)的密度大于或等于()g/cm3。
长于消化米面薯芋积滞的药物为
免疫电泳技术的实质是
A、利福平B、氨硫脲C、吡嗪酰胺D、乙胺丁醇E、乙硫异烟肼会引起球后视神经炎的是
肾综合征出血热的传染源是
主要用于密封要求较高的地方,使用在水、蒸汽等介质上,密封性好,结构紧凑,启门灵活,寿命长,维修方便的阀门是()。
语文课程应致力于形成和发展学生的()。
阅读下面的短文,回答下列五道题。“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家
(2011年)已知当x→0时,函数f(x)=3sinx—sin3x与cxk是等价无穷小,则()
WhichhoteldoesGraham’scolleaguerecommend?Howlatewasthetrain?
最新回复
(
0
)