首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(u,v)具有连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设f(u,v)具有连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
admin
2019-01-26
48
问题
设f(u,v)具有连续偏导数,且满足f
u
’(u,v)+f
v
’(u,v)=uv,求y(x)=e
-2x
f(x,x)所满足的一阶微分方程,并求其通解。
选项
答案
方法一:y(x)=e
-2x
f(x,x)对x求导得 y’=-2e
-2x
f(x,x)+e
-2x
f
1
’(x,x)+e
-2x
f
2
’(x,x) =-2e
-2x
f(x,x)+e
-2x
[f
1
’(x,x)+f
2
’(x,x)] =-2y+e
-2x
[f
1
’(x,x)+f
2
’(x,x)], 因为f’
u
(u,v)+f
v
’(u,v)=uv,即f
1
’(u,v)+f
2
’(u,v)=uv,所以f
1
’(x,x)+f
2
’(x,x)=x
2
,因此y’=-2y+x
2
e
-2x
,即y(x)满足一阶微分方程y’+2y=x
2
e
-2x
。 由一阶线性微分方程的通解公式得 [*] 其中C为任意常数。 方法二:由y(x)=e
-2x
f(x,x)得 f(x,x)=e
2x
y(x), 因为f
u
’(u,v)+f
v
’(u,v)=uv,即f
1
’(u,v)+f
2
’(u,v)=uv,所以f
1
’(x,x)+f
2
’(x,x)=x
2
,即 [*] 将其代入f(x,x)=e
2x
y(x)有[e
2x
y(x)]’=x
2
,即 2e
2x
y(x)+e
2x
y’(x)=x
2
, 化简得 y’(x)+2y(x)=x
2
e
-2x
。 由一阶线性微分方程的通解公式得 [*] 其中C为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/e5j4777K
0
考研数学二
相关试题推荐
(1991年)利用导数证明:当χ>1时,有不等式.
(1992年)计算曲线y=ln(1-χ2)上相应于0≤χ≤的一段弧的长度.
曲线y=ln(e一)的全部渐近线为___________.
设f(x,y)=则f(x,y)在点0(0,0)处()
求极限:.
(1)设f(x)是以T为周期的连续函数,试证明:∫0xf(t)dt可以表示为一个以T为周期的函数φ(x)与kx之和,并求出此常数k;(2)求(1)中的∫0x(t)dt;(3)以[x]表示不超过x的最大整数,g(x)=x一[x],求∫0x
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
随机试题
冠状动脉粥样硬化最常累及的动脉分支是( )
采用国际铁路联运的进口货物抵达国境站时,口岸外运公司根据合同资料对各种单证进行审核,只要单、证、票完全相符,就可以接受货物。()
某单位出纳人员兼管稽核工作,该做法违反了( )。
甲公司是上市公司,拥有一家子公司——乙公司。2006~2008年发生的相关交易如下:(1)2006年,甲公司将100件商品销售给乙公司,每件售价3万元,每件销售成本2万元,销售时甲公司已为该批存货计提存货跌价准备100万元(每件1万元)。2006年
Becauseourcompanyisbiggernowthanitwastwoyearsago,weneedto()moreemployees.
协调学校教育和家庭教育之间的关系的主要方式有()。
简述中学生道德发展的特点。
电影票原价若干元,现在每张降价3元出售,观众增加了一半,收入也增加了1/5,一张电影票原来多少元?()
根据下列材料回答问题。与1997年相比,2005年增长比率最高的消费类别是()。
中医人才青黄不接.与中医院不景气密切相关。目前,我国大部分中医院生存艰难。由于中医药收费低廉,体现不了中医的技术含量,大量中医院不得不弃“中”姓“西”,诊断治疗几乎与西医院没有差异。在这样的体制下,很多中医辛苦一生,却家徒四壁;而西医不仅社会地位高,且收入
最新回复
(
0
)