首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T.计算:(1)Anξ1;(2)Anβ.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T.计算:(1)Anξ1;(2)Anβ.
admin
2019-03-12
34
问题
设A是三阶矩阵,λ
1
=1,λ
2
=2,λ
3
=3是A的特征值,对应的特征向量分别是
ξ
1
=[2,2,-1]
T
,ξ
2
=[-1,2,2]
T
,ξ
3
=[2,-1,2]
T
.
又β=[1,2,3]
T
.计算:(1)A
n
ξ
1
;(2)A
n
β.
选项
答案
(1)因Aξ
1
=λ
1
ξ
1
,故A
n
ξ
1
=λ
1
n
ξ
1
,故A
n
ξ
1
=1.ξ
1
=[*] (2)利用Aξ
i
=λ
i
ξ
i
有A
n
ξ
i
=ξ
i
n
ξ
i
,将β表成ξ
1
,ξ
2
,ξ
3
的线性组合.设 β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
, 即[*] 解得[*],故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gVP4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=xTAx=ax12+2x12一2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为一12.用正交变换化f(x1,x2,x3)为标准型.
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设n>1,n元齐次方程组AX=0的系数矩阵为在有非零解时求通解.
已知线性方程组AX=β存在两个不同的解.①求λ,a.②求AX=β的通解.
设f’(0)=1,且f(0)=0,求极限.
设f(x)在x=a可导,且f(a)=1,f’(a)=3,求数列极限w=.
汽车加油站共有两个加油窗口,现有三辆车A,B,C同时进入该加油站,假设A、B首先开始加油,当其中一辆车加油结束后立即开始第三辆车C加油,假设各辆车加油所需时间是相互独立且都服从参数为A的指数分布.第三辆车C在加油站等待加油时间T的概率密度;
已知随机变量X的概率分布为且P{X≥2}=,求未知参数θ及X的分布函数F(x).
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
设且AX=0有非零解,则A*X=0的通解为___________.
随机试题
行政组织结构的灵魂和核心是()
A.Aα纤维B.Aβ纤维C.Aδ纤维D.C纤维传导慢痛的外周神经纤维丰要是
目前诊断应为患者的血红蛋白降低
某经产妇,29岁。足月顺产后第2日,出现轻微下腹部阵痛。脐下3指可触及宫底,无压痛,阴道流血不多,无恶心、呕吐。恰当处理措施应为
马斯洛的“需要层次论”认为人有五种基本需要,按需要等级从高到低排列,最低级的需要是()
学生刚学英语时,对26个字母的记忆往往两头容易、中间难。可以解释这一现象的理论是()。
教师运用一些醒目的文字、符号、色彩对比等对学生行为进行的强化是()。
释迦牟尼(北京大学2003年世界古代史真题)
甲和乙公司签订一份汽车买卖合同,约定由乙公司在6月底将一辆行驶3万公里的卡车交付给甲,价款为3万元,甲交付定金5000元,交车后15日内余款付清。合同还约定,乙公司晚交车1天,扣除车款50元,甲晚交款1天,应多交车款50元;一方有其他违约情况,应向对方支
设(I),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中α1=.求方程组(Ⅰ)的基础解系;
最新回复
(
0
)