首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T.计算:(1)Anξ1;(2)Anβ.
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是 ξ1=[2,2,-1]T,ξ2=[-1,2,2]T,ξ3=[2,-1,2]T. 又β=[1,2,3]T.计算:(1)Anξ1;(2)Anβ.
admin
2019-03-12
51
问题
设A是三阶矩阵,λ
1
=1,λ
2
=2,λ
3
=3是A的特征值,对应的特征向量分别是
ξ
1
=[2,2,-1]
T
,ξ
2
=[-1,2,2]
T
,ξ
3
=[2,-1,2]
T
.
又β=[1,2,3]
T
.计算:(1)A
n
ξ
1
;(2)A
n
β.
选项
答案
(1)因Aξ
1
=λ
1
ξ
1
,故A
n
ξ
1
=λ
1
n
ξ
1
,故A
n
ξ
1
=1.ξ
1
=[*] (2)利用Aξ
i
=λ
i
ξ
i
有A
n
ξ
i
=ξ
i
n
ξ
i
,将β表成ξ
1
,ξ
2
,ξ
3
的线性组合.设 β=x
1
ξ
1
+x
2
ξ
2
+x
3
ξ
3
, 即[*] 解得[*],故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gVP4777K
0
考研数学三
相关试题推荐
计算n阶行列式
设是正定矩阵,其中A,B分别是m,n阶矩阵.记证明B—CTA-1C正定.
用配方法化下列二次型为标准型f(x1,x2,x3)=x122x22+2x1x2—2x1x3+2x2x3.
设n阶矩阵A满足A4+2A3一5A2+2A+5E=0.证明A一2E可逆.
设函数f(u,v)具有二阶连续偏导数,且满足f"uu(u,v)=f"vv(u,v),若已知f(x,4x)=x,f’u(x,4x)=4x2,求f"uu(x,4x),f"uv(x,4x)与f"vv(x,4x).
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=的特解;(Ⅱ)求y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)求y"+4y’+4y=ex的通解,其中a为常数;(Ⅳ)求y"+y=x3一x+2的通解.
设随机变量X~B(1,),Y~E(1),且X与Y相互独立,记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
设总体X~P(λ),则来自总体X的简单随机样本X1,X2,…,Xn的样本均值的概率分布为_________.
讨论f(x,y)=在点(0,0)处的连续性、可偏导性及可微性.
随机试题
根据以下情境材料,回答下列问题。大学生小李第一次去某大城市旅游,正值旅游旺季,各酒店客房爆满。小李好不容易订上某酒店的一个标准间。夜晚时分,小李到达酒店,从大楼东侧电梯上18楼,顺楼道径直抵达1810客房入住,楼道两侧客房有14间。夜深时分,楼道间
2008年6月30日,胡锦涛总书记在抗震救灾先进基层党组织和优秀共产党员代表座谈会上概括的伟大抗震救灾精神是
小儿出现高热,面部青紫,尤以鼻柱、两眉间及口唇四周为甚,往往属于
A.CK-MBB.GGTC.LDHD.ALTE.HBDH病毒性肝炎明显升高的酶是
运用各种最新技术实现企业的信息流、物流及资金流的集成和优化运行,使企业赢得竞争的一种生产模式即是()。
下列各项中,违反民法自愿原则的有()。
中国共产党独立领导革命战争和创建人民军队始于()。
东南亚国家和地区高等学校招生主要实行()。
(2016·江西)德育原则是德育工作中必须遵守的基本要求。以下表述能反映因材施教原则的是()
A、Itwillreducegovernmentrevenues.B、Itwillstimulatebusinessactivities.C、Itwillmainlybenefitthewealthy.D、Itwillc
最新回复
(
0
)