首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
admin
2016-04-08
118
问题
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
选项
答案
构造辅助函数F(x)=f(x)一g(x),由题设有F(A)=F(B)=0.又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,b)使得 [*] 若x
1
=x
2
,令c=x
1
,则F(C)=0. 若x
1
<x
2
,因F(x
1
)=g(x
1
)一g(x
1
)≥0,F(x
1
)=f(x
2
)一g(x
2
)≤0,从而存在c∈[x
1
,x
2
]c(a,b),使F(C)=0.在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得F’(ξ)=F’(ξ)=0.再对F’(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,知存在ξ∈(ξ
1
,ξ
2
)c(a,b),有F’’(ξ)=0,即f’’(ξ)=g’’(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/gZ34777K
0
考研数学二
相关试题推荐
设函数f(x)有连续的导数,且f(0)=0,f’(0)≠0,F(x)=∫0x(x2-t2)f(t)dt,且当n→0时,函数F’(x)与xk为同阶无穷小,则k等于().
函数f(x)=ln(secx+tanx)是().
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.证明:S1与S2的面积相等;
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
函数f(x)=∫xx+2πesintsintdt的值().
证明方程分别有包含于(1,2),(2,3)内的两个实根.
设函数f(x)连续,则在下列函数中,必为偶函数的是().
求函数f(x)=在区间上的平均值I.
随机试题
浓硫酸可以用铁制的容器盛放。 ()
顺式作用元们:是指
凡生疮疡,毒不外泄,反陷入里,称为
A.可引起瞳孔扩大B.可引起呼吸抑制C.可引起共济失调D.可引起急性心力衰竭E.可引起再生障碍性贫血碳酸锂
患者,女,18岁,因骨盆多处骨折入院,伴多个脏器损伤,病情观察中最重要的是及时发现其是否出现了
股票的基本特征包括()。
根据企业国有资产法律制度的规定,下列属于上市公司国有股权变动方式的有()。
当前世界新军事变革是最广泛的一次军事革命,其核心是:
Nearlyacenturyago,biologistsfoundthatiftheyseparatedaninvertebrateanimalembryointotwopartsatanearlystageof
WherewillRaphaelgothismorning?
最新回复
(
0
)