首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的分布函数为F(x),随机变量 k=1,2.令U=Y1+Y2,V=Y1Y2,试求U与V的联合分布律.
设随机变量X的分布函数为F(x),随机变量 k=1,2.令U=Y1+Y2,V=Y1Y2,试求U与V的联合分布律.
admin
2017-06-12
59
问题
设随机变量X的分布函数为F(x),随机变量
k=1,2.令U=Y
1
+Y
2
,V=Y
1
Y
2
,试求U与V的联合分布律.
选项
答案
U的可能取值为0,1,2,且 P(U=0)=P(Y
1
+Y
2
=0) =P(Y
1
=0,Y
2
=0) =P(X≤1,X≤2) =P(X≤1) =F(1), P(U=1)=P(Y
1
+Y
2
=1) =P(Y
1
=0,Y
2
=1)+P(Y
1
=1,Y
2
=0) =P(X≤1,X>2)+P(X>1,X≤2) =P(1<X≤2) =F(2)-F(1), P(U=2)=P(Y
1
+Y
2
=2) =P(Y
1
=1,Y
2
=1) =P(X>1,X>2) =P(X>2) =1-F(2). . 于是U的分布律为 [*] 类似可得V的分布律为 [*] 另外, P(U=0,V=1)=P(Y
1
+Y
2
=0,Y
1
Y
2
=1)=0, P(U=1,V=1)=P(Y
1
+Y
2
=1,Y
1
Y
2
=1)=0, P(U=2,V=0)=P(Y
1
+Y
2
=2,Y
1
Y
2
=0)=0. 再由联合分布律与边缘分布律的关系即得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gau4777K
0
考研数学一
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
用欧拉方程x2(d2y/dx2)+4x(dy/dx)+2y=0(x>0)的通解为_______.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
设随机变量x的概率密度为令Y=X2,F(x,y)为二维随机变量(X,Y)的分布函数,求:(Ⅰ)Y的概率密度fY(y);(Ⅱ)cov(X,Y);(Ⅲ)F(-1/2,4).
两台同样自动记录仪,每台无故障工作的时间服从参数为5的指数分布;首先开动其中一台,当其发生故障时,停用而另一台自动开动.试求两台记录仪无故障工作的总时间7’的概率密度f(t)、数学期望和方差.
设X1,X2,X3(n>1)是来自总体N(μ,σ)的随机样本,用2X2,-X1,及X1作总体参数μ为估计算时,最有效的是________.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
(1999年试题,一)设两两相互独立的三事件A,B和C满足条件:ABC=φ,P(A)=P,且已知,则P(A)=_________________.
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)