首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程组(Ⅰ) 与方程组(Ⅱ)x1+2x2+x3=n-1有公共解,求a的值及所有公共解.
设方程组(Ⅰ) 与方程组(Ⅱ)x1+2x2+x3=n-1有公共解,求a的值及所有公共解.
admin
2016-10-20
90
问题
设方程组(Ⅰ)
与方程组(Ⅱ)x
1
+2x
2
+x
3
=n-1有公共解,求a的值及所有公共解.
选项
答案
1°把方程组(Ⅰ)与(Ⅱ)联立,得方程组(Ⅲ) [*] 则方程组(Ⅲ)的解就是方程组(Ⅰ)与(Ⅱ)的公共解. 对方程组(Ⅲ)的增广矩阵作初等行变换,有 [*] 当a=1时,[*],此时方程组(Ⅲ)的通解为后(-1,0,1)
T
(k为任意常数),即为方程组(Ⅰ)与(Ⅱ)的公共解. 当a=2时,[*],此时方程组(Ⅲ)有唯一解(0,1,-1)
T
,这亦是方程组(Ⅰ)与(Ⅱ)的唯一公共解. 2°先求出方程组(Ⅰ)的解,其系数行列式 [*] 当a≠1且a≠2时,齐次方程组(Ⅰ)只有零解,但零向量不是方程组(Ⅱ)的解,所以方程组(Ⅰ)与(Ⅱ)的公共解只在a=1或a=2时才有可能. 当a=l时,对方程组(I)的系数矩阵作初等行变换,有 [*] 得到方程组(Ⅰ)的通解为k(-1,0,1)
T
,而此解也是方程组(Ⅱ)的解.故方程组(Ⅰ)与(Ⅱ)的公共解为:k(-1,0,1)
T
,k为任意常数. 当a=2时,对方程组(Ⅰ)的系数矩阵作初等行变换,有 [*] 故方程组(ⅠI)的通解为k(0,-1,1)
T
,后为任意常数. 把x
1
=0,x
2
=-k,x
3
=k代入方程组(Ⅱ)解出k=-1. 因此方程组(Ⅰ)与(Ⅱ)的公共解为(0,1,-1)
T
.
解析
本题有两种解法:一是根据两个方程组有公共解的条件知,把这两个方程组联立后的方程组也应有解,且其解即为所求的公共解;二是把一个方程组的解代入到另一个方程组,确立它们的公共解.
转载请注明原文地址:https://kaotiyun.com/show/ggT4777K
0
考研数学三
相关试题推荐
设矩阵Am×n的秩为r(A)=m<n,Em为m阶单位矩阵,下列结论中正确的是().
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
如果n个事件A1,A2,…,An相互独立,证明:将其中任何m(1≤m≤n)个事件改为相应的对立事件,形成的新的n个事件仍然相互独立;
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设α1=(2,-1,0,5),α2=(-4,-2,3,0),α3=(-1,0,1,k),α4=(-1,0,2,1),则k=________时,α1,α2,α3,α4线性相关.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
求下列隐函数的指定偏导数:
设一平面通过从点(1,-1,1)到直线的垂线,且与平面z=0垂直,求此平面的方程.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
斜齿轮的导程是指轮齿沿圆柱面绕一周,对应点径向间的距离。
男,52岁,刺激性咳嗽、痰中带血3个月,胸片见右肺上叶部分不张,多次痰查癌细胞阴性。为进一步明确诊断,应做的检查是
高血压脑出血最常累及的血管是
净化空调系统风管的安装,应在其安装部位的()已施工完成,室内具有防尘措施的条件下进行。
根据洛伦茨曲线图可以计算出反映居民食品支出占全部消费品支出百分比的指标一基尼系数。()
学生通过独立学习获取知识和技能的能力是()。
Aneweraisuponus.Callitwhatyouwill:theserviceeconomy,theinformationage,theknowledgesociety.Italltranslates
颌面及颈部较大创口和脓腔的引流常用()。
一般来说,主权是指国家的最高权力。人民主权指的是
Aneweconomicspaperhassomeold-fashionedadviceforpeoplenavigatingthestressesoflife:Findaspousewhoisalsoyourb
最新回复
(
0
)