首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=________。
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,一2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表示,但是β2=(0,1,2)T不可以由α1,α2,α3线性表示,则a=________。
admin
2020-03-10
64
问题
设α
1
=(1,2,1)
T
,α
2
=(2,3,a)
T
,α
3
=(1,a+2,一2)
T
,若β
1
=(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,但是β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则a=________。
选项
答案
一1
解析
根据题意,β
1
(1,3,4)
T
可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
有解,β
2
=(0,1,2)
T
不可以由α
1
,α
2
,α
3
线性表示,则方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,由于两个方程组的系数矩阵相同,因此可以合并一起作矩阵的初等变换,即
,
因此可知,当a=一1时,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β有解,方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
2
无解,故a=-1。
转载请注明原文地址:https://kaotiyun.com/show/gqA4777K
0
考研数学二
相关试题推荐
[*]
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小。
求极限
(2004年)求极限
(17)设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2,(Ⅰ)证明r(A)=2;(Ⅱ)若β=α1+α2+α3,求方程组Ax=β的通解.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_______。
设A为三阶矩阵,将A的第2行加到第1行得B,再将B的第1列的—1倍加到第2列得C,记P=,则()
[2005年]如图1.3.2.3所示,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f″′(x)dx
[2004]设f(x)为连续函数,F(t)=∫1tdy∫ytf(x)dx,则F′(2)等于().
设f(χ)在[0,+∞)上连续,且f(0)>0,设f(χ)在[0,χ]上的平均值等于f(0)与f(χ)的几何平均数,求f(χ).
随机试题
能产生LTA的细菌是
管电压在摄影条件选择中的意义,错误的是
保管特殊类型药材必须具有
在公共场所附近开挖沟槽时,应设防护设施,夜间设置照明灯和警示红灯。()
在某些情况下,被保险人患病或遭受意外伤害,最终是否残疾在短期内难以判定,为此保险公司规定一个定残期限,过了该期限后仍无明显好转征兆的,认定为全残。这种情况称为( )。
立面图的绘制中整个建筑的外轮廓尺寸线用( )线绘制。
信用风险管理委员会或类似机构可以考虑重新设定/调整限额的情况有()。
饮水时,应注意遵循少次多量的原则。
把对集体与个人的管理结合起来的班级管理是()。
A、Thecablecarride.B、GoldenGatePark.C、Fisherman’sWharf.D、Busesandstreetcars.A男士问女士最喜欢旧金山的什么,女士回答:“我也不知道,这很难说。我喜欢金门大桥
最新回复
(
0
)