首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换为矩阵B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2019-02-01
30
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换为矩阵B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选(C).
转载请注明原文地址:https://kaotiyun.com/show/grj4777K
0
考研数学二
相关试题推荐
设n为自然数,试证:.
给出如下5个命题:(1)若不恒为常数的函数f(x)在(一∞,+∞)内有定义,且x0≠0是f(x)的极大值点,则一x0必是一f(一x)的极大值点;(2)设函数f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,则F(x)
如图1.3—1所示,设曲线方程为y=x2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:.
设线性方程组λ为何值时,方程组有解,有解时,求出所有的解.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
设f(χ)分别满足f(χ)在χ=0邻域二阶可导,f′(0)=0,且(-1)f〞(χ)-χf′(χ)=eχ-1,则下列说法正确的是
设则f(x+1)一f(x)=___________.
设f(x)在x=0处存在四阶导数,又设则必有()
在中,无穷大量是
随机试题
治疗药物浓度监测的标本采集时间一般选择在
男性,28岁,自幼反复出现咳嗽、咯黄痰,偶有痰中带血,曾有两次咯血:量在100ml以上,胸片见双下肺纹理粗乱。应考虑女性,25岁,近1年反复出现咳嗽、低热,偶有痰中带血,胸片双下肺斑片影,沿支气管走行播散。应考虑
医疗机构在药品购销中暗中收受回扣或其他利益,依法对其给予罚款处罚的机关是
诉讼结构
[2014年,第120题]某建设工程项目完成施工后,施工单位提出工程竣工验收申请,根据《建设工程质量管理条例》规定,该建设工程竣工验收应当具备的条件不包括()。
机床中( )常采用液压传动。
下列各种票据中,属于《票据法》调整范围的有()。
Accordingtoasurvey,whichwasbasedontheresponsesofover188,000students,today’straditional-agecollegefreshmenare"
"WhatcanIranteachusaboutgoodgovernance?"isnotaquestionoftenposedinWashington.ButaccordingtoBenjaminHippen,a
Hisunhappychildhood______hisbadtemper.
最新回复
(
0
)