首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B是反对称矩阵,证明: AB—BA是反对称矩阵。
已知A,B是反对称矩阵,证明: AB—BA是反对称矩阵。
admin
2019-08-12
57
问题
已知A,B是反对称矩阵,证明:
AB—BA是反对称矩阵。
选项
答案
(AB—BA)
T
=B
T
A
T
—A
T
B
T
=BA—AB=一(AB—BA),所以AB—BA是反对称矩阵。 由AB=A—B可得E+A—B—AB=E,即(E+A)(E一B)=E,这说明E+A与E一B互为逆矩阵,所以(E一B)(E+A)=E,将括号展开得BA=A—B,从而可得AB=BA,即A,B满足乘法交换律。
解析
转载请注明原文地址:https://kaotiyun.com/show/gvN4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(f)=0;
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
设f(x)在闭区间[一1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f’(0)=0,证明:在[一1,1]内存在ξ,使得f"(ξ)=3.
设A为3阶矩阵,3维列向量α,Aα,A2α线性无关,且满足3Aα-2A2α-A3α=0,令矩阵P=[αAαA2α],(1)求矩阵B,使AP=PB;(2)证明A相似于对角矩阵.
设g(x)在x=0处二阶可导,且g(0)=g’(0)=0,设则f(x)在x=0处()
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解.试求:(1)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;(2)该方程组满足x2=x3的全部解.
设齐次线性方程组Ax=0为(I)求方程组(*)的基础解系和通解;(Ⅱ)问a,b满足什么条件时,方程组(*)和(**)是同解方程组.
设A是任一n阶矩阵,下列交换错误的是
∫2xlnxln(1+x)dt=()
随机试题
关于银行的“风险管理部门”的说法正确的是()。
简述毛泽东行政组织思想的理论渊源。
关于心包摩擦音的叙述,不正确的是
治疗眼病、热病、神志病,宜选用的经脉是
孕妇妊娠8个月,产前来医院咨询,对母乳喂养的婴儿如何预防佝偻病的发生,以下几项中有哪一项是错误的( )。
A平肝潜阳,息风止痉B平肝潜阳,清肝明目C平肝潜阳,清热解毒D息风止痉,解毒散结E息风止痉,清肝明目蜈蚣与全蝎均具有的功效是()
可靠性原则要求企业的各项财产在取得时按实际发生的成本计量,其后各项财产如果发生了价值减损,应根据谨慎性原则计提减值准备,计提的减值准备减少资产的账面价值;如果各项财产发生的升值,应根据可靠性的原则相应调整增加财产的账面价值。()
在发票的各联次中,由收执方作为付款或收款原始凭证的称为()。
()预测是指利用各种经济因素的统计数据或它们之间的数量依存关系来推测未来事件的发展程度。
下列不正确的叙述是( )。
最新回复
(
0
)