首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα2=α1+α2,试证α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα2=α1+α2,试证α1,α2,α3线性无关.
admin
2018-08-12
51
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
2
=α
1
+α
2
,试证α
1
,α
2
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,得(A—E)α
1
=0,(A—E)α
2
=α
1
,(A—E)α
3
=α
2
. 设数λ
1
,λ
2
,λ
3
,使λ
1
α
1
+λ
2
α
2
+λ
3
α
3
=0, (1) 用A—E左乘上式两边,得λ
2
α
1
+λ
3
α
2
=0. (2) 再用A—E左乘(2)式两边,得λ
3
α
1
=0.而α
1
≠0,于是λ
3
=0. 代入(1)、(2),得λ
2
=0,λ
1
=0,故α
1
,α
2
,α
3
线性无关.
解析
本题考查向量组线性相关性的概念,是比较典型的证明方法.
转载请注明原文地址:https://kaotiyun.com/show/tLj4777K
0
考研数学二
相关试题推荐
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
=_______
设k>0,则函数的零点个数为().
设φ(x)=∫0x(x-t)2f(t)dt,求φ"’(x),其中f(x)为连续函数
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得
设f(x)=讨论函数f(x)在x=0处的可导性.
设讨论它们在点(0,0)处的①偏导数的存在性;②函数的连续性;③方向导数的存在性;④函数的可微性.
设X的概率密度为f(x)=,一∞<x<+∞,(1)求E(X)和D(X);(2)求X与|X|的协方差,判断X与|X|是否不相关;(3)判断X与|X|是否相互独立.
(1996年)设函数f(χ)=(1)写出f(χ)的反函数g(χ)的表达式;(2)g(χ)是否有间断点、不可导点,若有,指出这些点.
随机试题
简述专利的基本含义及其特征。
公司2009年签订的购销合同应缴纳的印花税是()元。
在国际竞争演化的要素驱动阶段,企业竞争力的来源主要是本国的()。
甲股份有限公司(以下简称“甲公司”)为上市公司,其相关交易或事项如下。(1)经相关部门批准,甲公司于2015年1月1日按面值发行分期付息、到期一次还本的可转换公司债券200000万元,另支付发行费用3000万元,实际募集资金已存入银行专户。根据可转换公
简要介绍培训项目收费标准核算的方法。
出现下列的情况可能导致死锁的是()。
InOctober2002,GoldmanSachsandDeutscheBank(1)_____anewelectronicmarket(www.gs.com/econderivs)foreconomicindicest
(23)在实验阶段进行,它所依据的模块功能描述和内部细节以及测试方案应在(24)阶段完成,目的是发现编程错误。(25)所依据的模块说明书和测试方案应在(26)阶段完成,它能发现设计错误。(27)应在模拟的环境中进行强度测试的基础上进行,测试计划应在软件需求
希尔排序法属于哪一种类型的排序法______。
Easterisa【B1】______ofoverwhelmingjoy,thejoythat【B2】______life,orrather,thevictoryoflifeoverdeath.Butdoesithav
最新回复
(
0
)