首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年)函数f(x)=(x2一x一2)|x3一x|不可导点的个数是( )
(1998年)函数f(x)=(x2一x一2)|x3一x|不可导点的个数是( )
admin
2018-03-11
51
问题
(1998年)函数f(x)=(x
2
一x一2)|x
3
一x|不可导点的个数是( )
选项
A、3
B、2
C、1
D、0
答案
B
解析
方法一:当函数中出现绝对值号时,就有可能出现不可导的“端点”,因为这时的函数是分段函数。f(x)=(x
2
一x一2)|x||x
2
一1|,当x≠0,±1时f(x)可导,因而只需在x=0,±1处考虑f(x)是否可导。在这些点我们分别考虑其左、右导数。由
即f(x)在x=一1处可导。又
所以f(x)在x=0处不可导。
类似,函数f(x)在x=1处亦不可导。因此f(x)只有两个不可导点,故应选B。
方法二:利用下列结论进行判断:
设函数f(x)=|x一a|φ(x),其中φ(x)在x=a处连续,则f(x)在x=a处可导的充要条件是φ(a)=0。
先证明该结论:
由导数的定义可知:
其中
可见,f′(a)存在的充要条件是φ(a)=一φ(a),也即φ(a)=0。
再利用上述结论来判断本题中的函数有哪些不可导点:
首先,绝对值函数分段点只可能在使得绝对值为零的点,也就是说f(x)=(x
2
一x一2)|x
3
一x|只有可能在使得|x
3
一x|=0的点处不可导,也即x=一1,x=0以及x=1。
接下来再依次对这三个点检验上述结论:
对x=一1,将f(x)写成f(x)=(x
2
一x一2)|x
2
一x||x+1|,由于(x
2
一x-2)|x
2
一x|在x
=一1处为零,可知f(x)在x=一1处可导。
对x=0,将f(x)写成f(x)=(x
2
一x一2)|x
2
一1||x|,由于(x
2
一x一2)|x
2
一1|在x=0处不为零,可知f(x)在x=0处不可导。
对x=1,将f(x)写成f(x)=(x
2
一x一2)|x
2
+x||x+1|,由于(x
2
一x一2)|x
2
+x|在x=1处不为零,可知f(x)在x=1处不可导。
因此f(x)有两个不可导点,故应选B。
转载请注明原文地址:https://kaotiyun.com/show/gvr4777K
0
考研数学一
相关试题推荐
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
方程组的通解是__________.
微分方程的通解为______.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.已知ξ在基β1,β2,β3下的坐标为[1,0,2]T,求ξ在基α1,α2,α3下的坐标;
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求β1,β2,β3到α1,α2,α3的过渡矩阵;
设A是m×n矩阵,证明:存在非零的n×s矩阵B,使得AB=0的充要条件是r(A)<n.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
已知极限求常数a,b,c。
(2017年)幂级数在区间(一1,1)内的和函数S(x)=____________.
(2003年)设则a2=____________.
随机试题
内脏损伤后,防治休克的措施是
患者,男,42岁。患慢性阑尾炎3年,经常反复发作,发时右下腹隐隐疼痛,痛处固定不移,腹皮微急,伴轻度恶心欲吐,便干溲黄,舌苔薄黄,脉弦。治疗应首选( )。
招标投标制度在大胆探索和创立时期具有的特点包括()。
折旧率随着使用年限的变化而变化的固定资产折旧计算方法是()。
飞机库的每个防火分区至少应有两个直通室外的安全出口,其最远工作地点到安全出口的距离不应大于()m。
关于奥肯定律的含义和作用的说法,正确的有()。
学校开展各类活动的最基本的基础组织是()。
在法国小学用汉语教数学体现了沉浸式外语教学的理念.()
简述新闻价值的五要素。(四川大学2014年研)相关试题:(1)怎样理解新闻价值要素中的“重要性”?请结合一些典型新闻报道举例说明。(中山大学2015年研)(2)简述新闻价值构成要素。(广西大学2018年研;中南财大2010年研;厦门大学2009年研)
Smallbusinessownersmustaccepttheburdensofentrepreneurship.Beinginbusinessforyour-selfrequiresyourfullattention
最新回复
(
0
)