首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (11)方程f(x)f(x)+[f′(x)]2=0在区间(0,1)内至少存在两个不同的实根。
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,证明: (I)方程f(x)=0在区间(0,1)内至少存在一个实根; (11)方程f(x)f(x)+[f′(x)]2=0在区间(0,1)内至少存在两个不同的实根。
admin
2018-03-11
35
问题
(2017年)设函数f(x)在区间[0,1]上具有二阶导数,且f(1)>0,
证明:
(I)方程f(x)=0在区间(0,1)内至少存在一个实根;
(11)方程f(x)f(x)+[f′(x)]
2
=0在区间(0,1)内至少存在两个不同的实根。
选项
答案
(I)由于[*]则由函数极限的局部保号性可知,存在一个δ>0,使得当x∈(0,δ)时,[*] 又由于f(1)>0,所以由零点定理可知,方程f(x)=0在(0,1)内至少有一个实根。 (Ⅱ)令F(x)=f(x)f′(x),则F′(x)=f(x)f’’(x)+[f′(x)]
2
。 [*] 又由(I)可知:至少存在一点x
0
∈(0,1),使得f(x
0
)=0。 由罗尔定理可知:至少存在一点ξ
1
∈(0,x
0
),使得f′(ξ
1
)=0,从而F(0)=F(ξ
1
)=F(x
0
)=0。 再由罗尔定理可知:至少存在一点ξ
2
∈(0,ξ
1
)和ξ
3
∈(ξ
1
,x
0
),使得F′(ξ
2
)=F′(ξ
3
)=0。 故方程f(x)=f(x)f"(x)+[f′(x)]
2
=0在(0,x
0
)[*](0,1)内至少存在两个不同的实根。
解析
转载请注明原文地址:https://kaotiyun.com/show/Vqr4777K
0
考研数学一
相关试题推荐
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设有4阶方阵A满足条件|3E+A|=0,AAT=2E,|A|<0,其中E是4阶单位阵.求方阵A的伴随矩阵A*的一个特征值.
已知线性方程组a,b为何值时,方程组有解;
设f(x)是连续函数,F(x)是f(x)的原函数,则
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分。
设函数f(r)(r>0)有二阶连续导数,并设满足求u的一般表达式。
(2004年)欧拉方程的通解为__________。
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
(2007年)设曲线L:f(x,y)=1(f(x,y)具有一阶连续偏导数)过第Ⅱ象限内的点M和第Ⅳ象限内的点N,T为L上从点M到点N的一段弧,则下列积分小于零的是
随机试题
不是胰岛素的适应证的糖尿病是
通知是一个教育的过程,即教育目标顾客接受其产品。()
张某故意伤害一案,被害人李某提起附带民事诉讼。一审判决张某有期徒刑5年,赔偿李某2000元。李某认为赔偿数额太少了,在上诉期内提出上诉。对此,请回答第(1)一(2)题。下列哪些说法是正确的?()
直接套用概算指标编制单位建筑工程设计概算时,拟建工程应符合的条件包括()。
电汇业务是指应汇款人的要求,用()的形式,指示汇人行付款给指定收款人。
下列各项中,符合印花税有关规定的有()。
【2014年山东邹城.填空】新课程回归生活最明显的体现在__________。
情景:你是王菲,因为生病,所以向老师请假。任务:请你用英语写一个50字左右的请假条,应写:1.因为生病,医生建议休息几天。2.特此请假3天。3.病好后立即返回学校上课。
Heplaystennistothe______ofallothersports.
Therearesomestepsyoucantaketoavoidcatchingacold.Contrarytopopularbelief,coldsarenotcausedbyexposuretoseve
最新回复
(
0
)