首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3由α1,α2,α3线性表示
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。 (Ⅰ)求a的值; (Ⅱ)将β1,β2,β3由α1,α2,α3线性表示
admin
2017-01-14
36
问题
设向量组α
1
=(1,0,1)
T
,α
2
=(0,1,1)
T
,α
3
=(1,3,5)
T
不能由向量组β
1
=(1,1,1)
T
,β
2
=(1,2,3)
T
,β
3
=(3,4,a)
T
线性表示。
(Ⅰ)求a的值;
(Ⅱ)将β
1
,β
2
,β
3
由α
1
,α
2
,α
3
线性表示。
选项
答案
(Ⅰ)由于α
1
,α
2
,α
3
不能由β
1
,β
2
,β
3
表示,且由|α
1
,α
2
,α
3
|=1≠0,知α
1
,α
2
,α
3
线性无关,所以,β
1
,β
2
,β
3
线性相关,即|β
1
,β
2
,β
3
|=[*]=a-5=0,解得a=5。 (Ⅱ)本题等价于求三阶矩阵C,使得(β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)C。 所以C=(α
1
,α
2
,α
3
)
-1
(β
1
,β
2
,β
3
)= [*] 因此(β
1
,β
2
,β
3
)=(α
1
,α
2
,α
3
)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/gxu4777K
0
考研数学一
相关试题推荐
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
设A为n阶矩阵,满足AAT=E(E为n阶单位阵,AT是A的转置矩阵),丨A丨
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
设3阶实对称矩阵A的特征值是1,2,3,矩阵A的属于特征值1,2的特征向量分别是α1=(﹣1,﹣1,1)T,α2=(1,﹣2,﹣1)T.(I)求A的属于特征值3的特征向量;(Ⅱ)求矩阵A.
随机试题
关于局灶结节样增生的典型超声造影表现是
《药品生产质量管理规范》(GMP)认证制度是国家对药品生产企业进行监督检查的一种手段,下列不属于GMP认证程序的是()。
采用工程量清单计价的工程,当综合单价需要调整时,应按下列办法确定()。
下列各项中,须经股东大会以特别决议的方式通过的事项有()。
正常人错觉的性质包括()。
超额剩余价值与相对剩余价值的共同点在于()。
化为极坐标系中的累次积分为()
Thestudentsayssheis______whensheisstudyingathome.Theadvisersuggests______withanotherstudentafterlectureso
A、Thedoctorhasstoppedseeingnewpatients.B、Thedoctor’sofficewillbeclosedtomorrow.C、Thedoctor’sscheduleisfilledt
A、Ithasbeenthebestsellerforweeks.B、Itadvisespeopletochangethemselves.C、Itisbeingsoldataverylowprice.D、Itd
最新回复
(
0
)