首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上可导,f’(a)f’(b)<0.下述命题: ①至少存在一点x0∈(a,b)使f(x0)>f(a); ②至少存在一点x0∈(a,b)使f(x0)>f(x); ③至少存在一点x0∈(a,b)使f(x0)=0; ④至少存在一点x0∈(a,
设f(x)在[a,b]上可导,f’(a)f’(b)<0.下述命题: ①至少存在一点x0∈(a,b)使f(x0)>f(a); ②至少存在一点x0∈(a,b)使f(x0)>f(x); ③至少存在一点x0∈(a,b)使f(x0)=0; ④至少存在一点x0∈(a,
admin
2019-02-23
28
问题
设f(x)在[a,b]上可导,f’(a)f’(b)<0.下述命题:
①至少存在一点x
0
∈(a,b)使f(x
0
)>f(a);
②至少存在一点x
0
∈(a,b)使f(x
0
)>f(x);
③至少存在一点x
0
∈(a,b)使f(x
0
)=0;
④至少存在一点x
0
∈(a,b)使f(x
0
)=
[f(a)+f(b)].
正确的个数为 (
选项
A、1
B、2
C、3
D、4
答案
A
解析
只有③是正确的.其证明如下:设f’(a)<0,f’(b)>0.
由
以及保号性,则存在点x
1
∈(a,b)使f(x
1
)-f(a)<0及x
2
∈(a,b)使f(x
2
)-f(b)<0.因此f(a)与f(b)都不是f(x)在[a,b]上的最小值,从而f(x)在[a,b]上的最小值必在(a,b)内部,故知存在x
0
∈(a,b)使f’(x
0
)=0.若f’(a)>0,f’(b)<0,其证明类似.
①,②与④的反例:f(x)=x
2
-x,当x∈[0,1]时,有f’(0)=-1,f’(1)=1,f’(0)f’(1)<0.但当x∈(0,1)时,f(x)<f(0)=f(1)=0.
转载请注明原文地址:https://kaotiyun.com/show/h904777K
0
考研数学一
相关试题推荐
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:(1)两个球中一个是红球一个是白球;(2)两个球颜色相同.
设F(x)=e-t2dt,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)x2F′(x)dx.
设n阶矩阵A=证明:行列式|A|=(n+1)an。
设总体X服从对数正态分布,其概率密度为其中μ为未知参数,且X1,X2,…,Xn是来自总体X的一个简单随机样本.(Ⅰ)求参数μ的最大似然估计量;(Ⅱ)验证是μ的无偏估计量.
盒中盛有10个分币,其中含有0个,1个,2个,…,10个铜币是等可能的.现向盒中放入一个铜币,然后随机从盒中取出一个分币,则这个分币为铜币的概率是
下列级数中属于条件收敛的是
进行独立重复试验直到试验取得首次成功为止,设每次试验的成功率都是p(0<p<1).现进行10批试验,其各批试验次数分别为5,4,8,3,4,7,3,1,2,3.求:(Ⅰ)试验成功率p的矩估计值;(Ⅱ)试验失败率q的最大似然估计值.
设A为三阶非零矩阵,已知A的各行元素和为0,且AB=O,真中B=则Aχ=0的通解为_______。
幂级数的收敛域为________
设Fn(x)是经验分布函数,基于来自总体X的容量为n的简单随机样本,F(x)是总体X的分布函数,则下列命题错误的为:Fn(x)对于每个给定的x,().
随机试题
简述物质与运动的关系。
肾细胞癌的副肿瘤综合征包括
对腹部闭合性损伤伴休克,腹腔穿刺抽出粪性液体的病人应
体力劳动导致器官和组织的血液流量变化为()。
甲与乙签订销售空调100台的合同,但甲向乙交付时,乙以空调市场疲软为由,拒绝受领,要求甲返还货款、下列哪些说法是正确的()
某商业银行决定推出一批新型理财产品,但该业务品种在已获批准的业务范围之外。该银行在报批的同时要求下属各分行开展试销。对此,下列哪一选项不属于国务院银行业监督管理机构职责范围?(2010年试卷一第26题)
下列关于污水水质复杂程度的有关表述,正确的是( )。
如果组合的詹森指数为正,则其位于资本市场线上方,绩效好;如果詹森指数为负,则其位于资本市场线下方,绩效较差。()
下列不属于个人外汇账户按账户性质分类的是()。
使用命令在结构复合索引添加一个对“姓名”字段的索引项,索引名为“xm”。请将语句填写完整。 INDEX【】姓名【】xm
最新回复
(
0
)