首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知矩阵A=与B=相似. (Ⅰ)求χ,y,z的值; (Ⅱ)求可逆矩阵P,使P-1AP=B.
已知矩阵A=与B=相似. (Ⅰ)求χ,y,z的值; (Ⅱ)求可逆矩阵P,使P-1AP=B.
admin
2017-11-09
91
问题
已知矩阵A=
与B=
相似.
(Ⅰ)求χ,y,z的值;
(Ⅱ)求可逆矩阵P,使P
-1
AP=B.
选项
答案
(Ⅰ)实对称矩阵A的特征多项式为 |λ-A|=(λ-1)
2
(λ-3), 故A的特征值为λ
1
=λ
2
=1,λ
3
=3.于是,A与对角矩阵[*]相似, 又因为A与B相似,故B也与对角矩阵[*]相似,因此,B的特征值为λ
1
=λ
2
=1,λ
3
=3,且R(E-B)=1, 又因为χ+5=λ
1
+λ
2
+λ
3
=5,得χ=0.由 E-B=[*] 得y=-2,z=3. (Ⅱ)经计算可知,将实对称矩阵A化为对角矩阵的相似变换矩阵可取为P
1
=[*],即 P
1
-1
AP
1
=[*] 把矩阵B化为对角矩阵的相似变换矩阵可取为P
2
=[*],即 [*] 则P
-1
AP=P
2
P
1
-1
AP
1
P
2
-1
=P
2
[*]P
2
-1
=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/hBX4777K
0
考研数学三
相关试题推荐
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α=(a,1,1一a)T是方程组(A+E)X=0的解,则a=________.
设A=有三个线性无关的特征向量,求a及A*.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
令[*],方程组(I)可写为AX=b,方程组(Ⅱ)、(Ⅲ)可分别写为ATY=0及[*]=0.若方程组(I)有解,则r(A)=r(A|b),从而r(AT)=[*],又因为(Ⅲ)的解一定为(Ⅱ)的解,所以(Ⅱ)与(Ⅲ)同解;反之,若(Ⅱ)与(Ⅲ)同解,则
,问a,b,c取何值时,(I),(Ⅱ)为同解方程组?
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
计算二重积分,其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
求V(t)=((t一1)y+1)dxdy的最大值,其中Dt={(x,y)|x2+y2≤1,≤y≤1},2≤t≤3.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
随机试题
肾性水肿的临床表现是
男,38岁,持续左上腹痛2小时,向左肩部放射,查:腹软,上腹轻压痛,无反跳痛,血清淀粉酶380苏氏单位。`
复合材料风管的覆面材料防火级别应不低于(),内部的绝热材料防火级别应不低于()。
为解决车辆停驻而设置的城市公共停车场可分为三种类型,其中没有()。
简述票据权利和义务的内容。
《物业服务收费管理办法》的内容包括()。
下列选项中,既是省级风景名胜区,又是国家森林公园和省级自然保护区的有()。
一方面,作为发展中国家,中国必须继续把发展当作首要任务。尽管发展不等于简单的经济增长,但发展又必须以经济增长为基础。另一方面,中国的经济要可持续发展,又必须节约资源、保护环境。这两个方面之间的张力,引发了人们的一系列疑惑:过去30多年的高速经济增长是否值得
①没有甘油,只要到市面上买瓶润肤乳液就行,它的主要成分就含有甘油②那些节俭或喜欢动手享受家庭乐趣的朋友,也可以自己动手制作家庭洗手液③但是自制洗手液由于包装和密封条件不足,最好不要使用容易变质的牛奶或蜂蜜④其次是加人甘油。甘油不要超过2%,以免杀菌成
使用VC6打开考生文件夹下的源程序文件modi2.cpp。阅读下列函数说明和代码,完成空出部分程序。函数fun(char*s,char*s1,char*s2)中形参字符串s1和s2有相同的字符个数,且s1中各字符互不相同。该函数实现将已知字符串S中所有在字
最新回复
(
0
)