首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)n×n的秩为n,求齐次线性方程组Bx=0的一个基础解系,其中B=(aij)r×n,r<n。
设A=(aij)n×n的秩为n,求齐次线性方程组Bx=0的一个基础解系,其中B=(aij)r×n,r<n。
admin
2017-01-16
49
问题
设A=(a
ij
)
n×n
的秩为n,求齐次线性方程组Bx=0的一个基础解系,其中B=(a
ij
)
r×n
,r<n。
选项
答案
因为r(A)=n,即|A|≠0,所以r(B)=r,则Bx=0的基础解系所含向量个数为n-r。 由r(A)=n,可得A的伴随矩阵A
*
的r(A
*
)=n,令 [*] 由于r(A
*
)=n,所以r(η
r+1
,…,η
n
)=n-r,而 [*] 由于 [*] 所以Bη
i
=0(i=r+1,…,n)。 即η
r+1
,…,η
n
都是Bx=0的解,故η
r+1
,…,η
n
是Bx=0的一个基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/hCu4777K
0
考研数学一
相关试题推荐
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
下列各对函数中,两函数相同的是[].
曲线y=(x+4sinx)/(5x-2cosx)的水平渐近线方程为_____.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
计算曲面积分2x3dydz+2y3dzdx+3(z2-1)dxdy,其中∑是曲面z=1-x2-y2(z≥0)的上侧.
设f(x)在闭区间[0,c]上连续,其导数fˊ(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-82x3为标准形.
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为求A;
设f(x)是以T为周期的连续函数(若下式中用到f’(x),则设f’(x)存在),则以下4个结论,不正确的是()
设{un},{cn}为正项数列,证明:
随机试题
背景某大型高档商住小区项目,共计建筑面积22万m2,地上层数38层,其中地下为设备和停车用房,地上六层为商业建筑,其余为民用住宅。由于本工程位于中心城区,属于该市重点工程,施工单位对安全工作非常重视。施工总承包单位成立了项目部组织施工。施工过程中发生如下
渐霜风凄紧。
下面关于Word标题栏的叙述中,错误的是()
关于HELLP综合征,下列描述错误的是
钩体病早期出现的中毒症侯群有“三症状”,即_______、_______和全身乏力。
患者,女,37岁。月经量多,皮肤散在出血点,血象:血红蛋白120g/L,白细胞8×109/L,中性粒细胞0.7,淋巴细胞0.3,血小板50×109/L,骨髓片巨核细胞增多。应首先考虑的是()
在现代纸币制度下,引起货币失衡的原因主要是()。
【《战国策》】扬州大学2016年中国古代史真题
考虑如下两家公司:公司A从事房地产行业,股票的期望收益率和贝塔值分别为15%和1.1;公司B同时从事制药和融资租赁业务,两种业务的市值分别占B公司总市值的1/3和2/3,公司B的股票期望回报率和贝塔值分别为20%和1.6。假设B公司融资租赁业务的期望收
如果某地公共政策制定是正确的并且执行有力,则不会出现大规模上访。只有相关决策人不关心群众,才会出现大规模上访。某地公共政策制定是正确的,相关决策人也心系群众,深入实际搞调查研究,当地群众对此是满意的。根据以上信息,得不出以下哪项?
最新回复
(
0
)