首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式 f(1+sinx)一3f(1-sinx)=8x+α(x), 其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式 f(1+sinx)一3f(1-sinx)=8x+α(x), 其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
admin
2019-07-22
65
问题
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式
f(1+sinx)一3f(1-sinx)=8x+α(x),
其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
选项
答案
由f(1+sinx)一3f(1一sin x)=8x+α(x),令x→0,得 f(1)一3f(1)=0, 故f(1)=0.又 [*] 所以f’(1)=2.由于f(x+5)=f(x),所以f(6)=f(1)=0,f’(6)=f’(1)=2.故所求的切线方程为y=2(x一6),即 2x-y-12=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/hGN4777K
0
考研数学二
相关试题推荐
曲线eχ+y-sin(χy)=e在点(0,1)处的切线方程为=_______.
求微分方程χy〞+2y′=eχ的通解.
A、(n+1)anB、nanC、(n+1)aD、naA
微分方程y"一y=ex+1的特解应具有形式(其中a,b为常数)()
设f(χ),g(χ)在区间[a,b]上连续,且g(χ)<f(χ)<m,则由曲线y=g(χ),y=f(χ)及直线χ=a,χ=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
设A是n阶矩阵,对于齐次线性方程组(Ⅰ)Anx=0和(Ⅱ)An+1x=0,现有四个命题:①(Ⅰ)的解必是(Ⅱ)的解;②(Ⅱ)的解必是(Ⅰ)的解;③(Ⅰ)的解不是(Ⅱ)的解;④(Ⅱ)的解不是(Ⅰ)的解。以上命题中正确的是()
设F1(x)和F2(x)分别为X1和X2的分布函数,为使F(x)=aF1(x)+bF2(x)是某一随机变量的分布函数,在下列给定的各组数中应取()
求数列极限:(Ⅰ)(M>0为常数);(Ⅱ)设数列{xn}有界,求
(1)设圆盘的半径为R,厚为h.点密度为该点到与圆盘垂直的圆盘中心轴的距离的平方,求该圆盘的质量m;(2)将以曲线,x=1,x=4及x轴围成的曲边梯形绕x轴旋转一周生成的旋转体记为V,设V的点密度为该点到旋转轴的距离的平方,求该物体的质量M.
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
随机试题
在进行出版物口头宣传时,以()进行为妥。
在Access2010中,窗体的数据来源不能是________。
血瘀腰痛可选用外伤血瘀胁痛可选用
不宜首选手术治疗甲状腺癌是
溶质1g(ml)能在溶剂不到1ml中溶解的溶解性术语是
治疗不寐症时哪类病人可自己选择用药
项目决策分析与评价中,市场预测的方法有()。
成为中华人民共和国公民的条件是()。
人民法院赔偿委员会应该在收到赔偿申请之日起三个月内作出决定,属于疑难、复杂、重大案件的,经()批准,可以延长三个月。
BillGates,thebillionaireMicrosoftchairmanwithoutasingleearneduniversitydegree,isbyhissuccessraisingnewdoubtsa
最新回复
(
0
)