首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是( ).
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是( ).
admin
2021-07-27
51
问题
设A是秩为n-1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是( ).
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
-α
2
)
答案
D
解析
因为通解中必有任意常数,显然(A)不正确.由n-r(A)=1知Ax=0的基础解系由一个非零向量构成.但α
1
,α
1
+α
2
与α
1
-α
2
中哪一个一定是非零向量呢?已知条件只是说α
1
,α
2
是两个不同的解,那么α
1
可以是零解,因而kα
1
可能不是通解.如果α
1
=α
2
≠0,则α
1
,α
2
是两个不同的解,但α
1
+α
2
=0,即两个不同的解不能保证α
1
+α
2
≠0.因此可排除(B),(C).由于α
1
≠α
2
,必有α
1
-α
2
≠0.可见(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/hHy4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2一α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2一α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B—CTA一1C是否为正定矩阵,并证明结论.
写出下列二次型的矩阵:
若向量组α1,α2,α3线性无关,向量组α1,α2,α4线性相关,则
微分方程y"+2y’+2y=e一xsinx的特解形式为()
随机试题
词由语素构成,语素是语言中最小的音义结合体。()
暗适应
月经量多,经色淡红,质稀,其辨证是
关于挖孔桩施工的技术要求,错误的是()。
关于保证人资格,下列说法正确的是()。
2003年7月1日,甲企业按面值发行5年期、到期一次还本付息、年利率6%(不计复利)、面值总额为5000万元的债券。2004年12月31日“应付债券”科目的账面余额为()万元。
根据所给资料,回答下列问题。2014年,房地产开发企业房屋施工面积726482万平方米,比上年增长9.2%,增速比1—11月回落0.9个百分点。其中,住宅施工面积515096万平方米,增长5.9%。房屋新开工面积179592万平方米,下降10.7
文具店的圆珠笔每支4元,签字笔每支6元,钢笔每支7元。甲、乙、丙三人带的钱数相等且都不超过100元,三人分别购买一种笔。已知甲买完圆珠笔后还剩15元,乙买完签字笔后还剩21元,丙买完钢笔后还剩17元。如果三人的钱相加,最多能买多少支笔?()
在双绞线组网的方式中,以太网的中心连接设备是
CollegeLifeAmericancollegeanduniversitystudentswho【T1】______awayfromtheirfamiliesaregenerallyhousedin【T2】____
最新回复
(
0
)