首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=—2,α1=(1,—1,1)T是A的属于特征值λ1的一个特征向量,记B=A5—4A3 +E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
设三阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=—2,α1=(1,—1,1)T是A的属于特征值λ1的一个特征向量,记B=A5—4A3 +E,其中E为三阶单位矩阵。 (Ⅰ)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量; (Ⅱ)求矩阵B。
admin
2017-01-21
57
问题
设三阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=—2,α
1
=(1,—1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
—4A
3
+E,其中E为三阶单位矩阵。
(Ⅰ)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
(Ⅱ)求矩阵B。
选项
答案
(Ⅰ)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
,故 Bα
1
=(A
5
—4A
3
+E)α
1
=A
5
α
1
一4A
3
α
1
+α
1
=—2α
1
, 即α
1
是矩阵B的属于特征值—2的特征向量。 由关系式B=A
5
—4A
3
+E及A的三个特征值λ
1
=1,λ
2
=2,λ
3
=—2得B的三个特征值为μ
1
=—2,μ
3
=1,μ
3
=1。 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
,α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0。 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 [*] 得其基础解系为 [*] B的全部特征向量为 [*] 其中k
1
≠0,k
2
,k
3
不同时为零。 (Ⅱ)令P=(α
1
,α
2
,α
3
) [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/hLH4777K
0
考研数学三
相关试题推荐
[*]
[*]
A、 B、 C、 D、 B
利用全微分求下述函数在给定点的近似值:(1)ln(x-3y),(9,06);(2)x2y3z4,(05,0.9,01).
将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4{正面出现两次},则事件().
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设n阶矩阵求A的特征值和特征向量;
利用定积分计算下列极限:
行列式=_____.
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
随机试题
导致去个体化的主要原因是()
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.【C1】________theturnofthecenturywhenjazz(爵士乐)wasborn
A.基础培养基B.选择培养基C.鉴别培养基D.增菌培养基E.厌氧培养基庖肉培养基属于何种培养基
颞部外伤出血进行压迫止血的有效部位是()
30岁已婚女性,患宫颈炎多年,时轻时重,要求复诊并给予彻底治疗。检查宫颈中度糜烂,充血水肿,脓性白带,以下的诊断和处理哪项不正确
A.氯化钾B.维生素KC.硝普钠D.苯妥英钠E.氟罗沙星在滴注过程中药液必须遮光的是
下列会计处理方法中,符合权责发生制基础的是()。
某公司进入金融衍生品市场进行交易,如果目的是为了减少未来的不确定性,降低风险,则该公司属于()。
患者,男性,46岁。3年前因双下肢轻度水肿至当地县医院就诊,经检查诊为“肾病综合征”,服用西药治疗1年,症状未明显改善。之后2年内水肿反复发作,时轻时重,辗转多家西医医院治疗,病情不稳定,现寻求中医治疗。刻诊:身肿,腰以下为甚,按之凹陷不易恢复,纳少,腹胀
だいず
最新回复
(
0
)