首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
admin
2018-09-20
66
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由积分中值定理知,至少存在一点c∈(a,b),使得 [*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0, G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b), 使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
1
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0, 则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f"(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
)[*](a,b),使得F’(η)=0,故有 f”(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/hNW4777K
0
考研数学三
相关试题推荐
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设f(x)在[a,b]上连续且单调减少.证明:当0<k<1时,∫0kf(x)dx≥k∫01f(x)dx.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设f(x)在(一a,a)(a>0)内连续,且f’(0)=2.证明:求
设{un},{cn)为正项数列,证明:(1)若对一切正整数n满足cnun一cn+1un+1≤0,且发散,则un也发散;(2)若对一切正整数n满足一cn+1≥a(a>0),且收敛,则un也收敛.
设(n=1,2,…;an>0,bn>0),证明:(1)若级数bn收敛,则级数an收敛;(2)若级数an发散,则级数bn发散.
证明:(1)设an>0,且{nan}有界,则级数an2收敛;(2)若n2an=k>0,则级数an收敛.
随机试题
C3多于病后卫周前恢复见于选择性蛋白尿多见于
A市的甲工厂与B市的乙工厂签订一份买卖合同,约定由甲工厂供应乙工厂钢材10t,乙厂交付贷款3万元。但合同对付款地点和交货地点未约定,双方为此发生纠纷。付款地点和交货地点应为()。①付款地点为A市;②交货地点为A市;③付款地点为B市;④交货
一个同轴电缆长l=2m,其芯线导体半径r1=1cm,铅皮外壳内半径r2=6cm,导体间绝缘材料的电阻率p=1×109Ω.m,当内导体与外壳间电压U0为500V时,绝缘层中漏电流为()。
根据《煤矿安全监察条例》,地区煤矿安全监察机构、煤矿安全监察办事处应当对煤矿实施()安全检查。
根据国务院发布的《国家突发公共事件总体应急预案》,突发公共事件按照其性质、严重程度、可控性和影响范围等因素,一般分为()。
(1)获得支持(2)钢琴世家(3)热爱绘画(4)对家人不理解(5)与父母沟通
有50名学生选班长,得票最多的人当选。中途计票时发现刘燕已得18票,张军已得16票,李明已得9票。刘燕至少再得多少张票就一定能成为班长?()
典籍英译
有以下程序main(){intij;for(i=1;i
A、TheirBBSwasnotasgoodaswhattheyhadthoughtbefore.B、Theirprogressinthewebsite-designwashinderedforlackoffun
最新回复
(
0
)