首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0. 证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η)
admin
2018-09-20
68
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.
证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,且η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由积分中值定理知,至少存在一点c∈(a,b),使得 [*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0, G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b), 使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
1
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0, 则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f"(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
)[*](a,b),使得F’(η)=0,故有 f”(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/hNW4777K
0
考研数学三
相关试题推荐
对二元函数z=f(x,y),下列结论正确的是().
设随机变量X服从参数为2的指数分布,证明:Y=1一e一2X在区间(0,1)上服从均匀分布.
设随机变量X,Y的分布函数分别为F1(x),F2(x),为使得F(x)一aF1(x)+bF2(x)为某一随机变量的分布函数,则有().
设f’(x)在[0,1]上连续,且f(1)一f(0)=1.证明:f’2(x)dx≥1.
设S(x)=∫0x|cost|dt.证明:求
设{un},{cn)为正项数列,证明:(1)若对一切正整数n满足cnun一cn+1un+1≤0,且发散,则un也发散;(2)若对一切正整数n满足一cn+1≥a(a>0),且收敛,则un也收敛.
设{nan}收敛,且n(an一an一1)收敛,证明:级数an收敛.
随机试题
肾岩肝郁痰凝型应用何方失荣痰毒凝结型应用何方
A.1年B.2年C.3年D.4年麻醉药品、第一类精神药品购用印鉴卡有效期为
肾病综合征患者应给予的饮食类型为,
患者,女性,32岁。因急性咽炎,服磺胺类药,护士嘱其服药时要多饮水,其目的是
患者女,38岁。缩窄性心包炎1年,拟择日行心包切除术。夜班护士发现患者失眠,心率120次/分,双手颤抖。沟通中患者表示深恐手术发生意外,但又因病情重不得不行手术。护士采取的措施不妥的是()。
劳动保护法规定,女职工生育享受不少于( )的产假。
链斗式挖泥船挖掘机具均采用可变速装置,使之在挖泥作业中改变不同的()。
下列名店中,经营素食的名店是()。
下图为某项目的费用基线,请根据下图回答下面的问题:关于项目费用管理计划与其他管理计划的联系,下列说法中正确的是________。
六声调式并不能作为一种单独的调式,它只是在五声音阶中增加一个偏音,或是在七声音阶中减少________而形成的一种临时的调式。
最新回复
(
0
)